
A FPGA Implementation of Rate 1/2, 8088-bit
Irregular Low Density Parity Check Decoder

Yanni Chen
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN.
Email: ynchen@ece.umn.edu

Dale Hocevar
DSP Solutions R & D Center

Texas Instruments Inc., Dallas, TX.
Email: hocevar@ti.com

Abstract— This paper presents a FPGA implementation of
irregular low density parity check decoder. The considered low
density parity check code has code rate 1/2, codeword length of
8088 bits and parallel factor of 24. The partly parallel structure,
memory management, message alignment and addressing genera-
tion schemes needed to realize the underlying graph connectivity
will be discussed. With the target FPGA device Xilinx XC2V8000
and maximum number of 25 iterations, the information decoding
throughput could achieve up to 40Mbps.

I. INTRODUCTION

Low density parity check (LDPC) codes were first invented
in 1962 [1] and rediscovered recently [2]. In terms of coding
gain, it has been shown that LDPC codes are asymptotically
superior to turbo codes [3]. With respect to the decoding
complexity, LDPC decoder could be less computational even
with more iterations. However, the main advantage of LDPC
codes comes from the increased degree of parallelism that
can be applied to many high data rate applications such as
magnetic storage and wireless communications. The VLSI im-
plementation results using ASIC and FPGA are also reported
in [4] and [5], respectively.

Since better LDPC codes are both irregular and random, the
code construction we considered is called irregular partitioned
permutation (IPP) method [6]. It demonstrates comparable
decoding performance to 3GPP Turbo codes. For instance, for
rate 1/2 and codeword length of 5784 bits with maximum 50
decoding iterations, bit error rate of

�������
can be achieved

at the SNR of 1.4dB over AWGN channel. In addition, the
flexibility of its architecture makes it easily adaptable to
different code rates and block sizes.

In this paper, the VLSI design issues of the IPP constructed
LDPC codes are discussed, which include partly parallel
architecture design, the memory management and alignment
schemes to realize the underlying graph connectivity. The
structure of this paper is as follows. In Section 2, we first
briefly review the code construction and iterative decoding
algorithm for LDPC. Section 3 presents the block diagram
of partly parallel decoder and detailed architecture of each
component. Alignment and memory addressing generation
schemes are also presented in this section. Synthesis results
of FPGA implementation are discussed in Section 4. Finally
some conclusions are drawn in Section 5.

II. ENCODING AND DECODING OF LDPC CODES

In this section, the irregular partitioned permutation code
construction and its belief-propagation decoding algorithm
will be briefly explained.

A. Irregular Partitioned Permutation Method

Since LDPC codes could be uniquely defined by its parity
check matrix H, irregular partitioned permutation method
based on the work in [7] is to construct irregular H, i.e.,
either the row or column weights or both are not constants.
Its main idea is to first construct a small irregular block
structured matrix �	� with size of j
 k, where the row and
column degrees are properly optimized for good performance.
Then each element in H’ is replaced by a square m
 m
permutation matrix to obtain H, where m is a prime number.
Each permutation matrix is a circularly shifted identity matrix
with the shifting offsets given by (����
�� mod m), where

�������
�����	�������

and (s, t) denoting the element location within
� � . Generators a and b are chosen to have multiplicative order
k, j for prime number m, respectively. In this way, an irregular
LDPC code with rate R �"!#�%$&� and codeword length of m

 k is constructed. For the details of the code construction,
we refer the reader to [6]. For the sake of clarity, the block
parity check matrix �'� employed in this paper is shown here,
which greatly impacts our decoder structures discussed in later
sections.

1
1

1
1

1
1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1

1
1

1
1
1

1
1
1

1

1
1

1
1

1
1

1
1
1

1
1

1

1

1
1

1

1
1
1

1
1
1
1
1

1

1
1

1

1

1

1
1
1
1
1
1
1
1
1

1
1

1
1
1
1
1
1
1
1
1

1

1

12x24

H’ =

B. Belief Propagation Decoding Algorithm

LDPC codes can be effectively decoded by using the
iterative belief-propagation (BP) algorithm. In order to reduce

the hardware complexity, following log-BP algorithm [8] is
typically adopted. For the variable-to-check message ������� :

� ���
	 �
��
���� ���

� � � !��������� (1)

� � ��� 	 � � � ! � � � (2)

where M(j) is the set of check nodes connected to variable
node j. For the check-to-variable message

� � � :
� � � 	 �

��
!
�"� � �$#% �
&(' �����*),+

� � �-	 !/. ��
!
�"� � �$#% �1032�465 ' � � �*)7+ &(' � � � + (3)

where N(m) is the set of variable nodes connected to check
node m and the function

&('98 + 	;:=< 4 ' �
 5?> '�@ 8 $!� @ +A+ . The
iterative process stops when the maximum number of iterations
is reached or all the parity check equations are satisfied, i.e.,
H . x = 0, where x is the hard decision of � ��� .

III. PROPOSED DECODER STRUCTURE

In this section, the decoder architecture will be presented
according to the algorithm described above.

The block diagram of our decoder structure is shown in
Fig. 1, where major computation blocks include parallel adder
block (PAB), parity check update block (PCUB) and column
sum block (CSB). PAB is used to perform the subtraction
operation described in (2) while operands

� � � and � ��� are
fetched from R storage memory and column sum memory,
respectively. The parity equations check for early stopping is
also performed by PAB. PCUB computes the message from
check nodes to variable nodes as in (3). The full summation in
(1) is completed by CSB, which also contains both the input
buffer and decoded data memory. Router and reverse router
blocks are used to connect the check-to-variable messages and
variable-to-check messages according to the structure of block
matrix � � .

parity check update

reverse router

parallel adder

R storage memory

router

column sum blocks decoded
datadata

received

Fig. 1. Block diagram of our LDPC decoder

LDPC decoding is inherently parallizable because of data
independence among rows or columns. Without much extra
hardware in PCUB, all the check-to-variable messages for one

particular row can be updated simultaneously. However, the
complexity of fully parallel structure [4] for our frame size of
8088 bits is impractically high. Therefore, the partly parallel
architecture with certain parallel factor p, i.e., p consecutive
rows are computed at the same time, is of our interest. The
case of p equal to 24 is illustrated in Fig. 2 in which the PAB
as well as PCUB blocks are duplicated by 24 times. Though
the number of CSB blocks stays the same, each word inside
the CSB memories is widened by 24 times to accommodate
the larger data flow.

PAB1

RAM1

PCUB24

CSB9

router

PCUB1

CSB1

RAM24

PAB24

reverse router

Fig. 2. Partly parallel structure with parallel factor of 24

A. Parity Check Update Block

Due to the symmetry property of the
&

function in PCUB,
its look-up table (LUT) size could be reduced by half if all the
inputs are in sign magnitude data format. On the other hand,
the updated check-to-variable message has to be transformed
back to two’s complement format before flowing into the
router. The architecture of PCUB with corresponding word-
length is depicted in Fig. 3, where each LUT has 32 5-bit
entries in our design and each PCUB can process 7 or 8 data
per clock cycle.

Adder
Tree

5

L

5

5

Rmn

6

Rm1

XOR
Tree

6

to
SM

2’s

SM

2’s
to

1

1
1

5

5
U
T

L

U
T

L

U
T

L
to

SM

2’s

to
SM

2’s

1

Lqmn
6

Lqm1
6

5
U
T

Fig. 3. Architecture of parity check update block

B. Router and Reverse Router

According to its structure, the block matrix �'� could be
segmented into nine sections (denoted as dashed lines in the

matrix shown in Section 2.1) such that for any row there is
only one column connection in any section. In this way, for
each section only one computation unit to update the variable-
to-check message is necessary. Moreover, the router and
reverse router blocks become fairly straightforward: during any
block the routing is fixed, it switches only when a new block is
started (see Fig. 4). Note that a block here represents m rows,
where m is the prime number used for code construction.

2 5 6 7 81 3 4

Block #

PCUB

PAB

CSB

Router

2 5 6 7 81 3 4

Reverse

Router

9431 87652

Fig. 4. Architectures of router and reverse router

In Fig. 4, the nine connections represent nine sections of
the CSB while the eight blocks in PAB or PCUB come from
the maximum row weight of H’. All the multiplexers in both
routers are selected only by block number, which changes from
1 to j every ��� $���� clock cycles. For the reverse router, the
wordlength of the incoming and outgoing data is increased to
7 bits due to the accumulation effect of CSB blocks and wire
connections are anti-symmetrical to the router block.

C. Column Sum Block

The column sum block (CSB) performs the computation
described in (1), which is indeed an addition-accumulation
process. However, as we will see later, it turns to be the most
complicated block in our decoder. Due to the segmentation of
the block matrix H’, there are totally nine CSBs. They share
the same architecture as depicted in Fig. 5 except different
memory sizes and (reverse) alignment blocks.

1) Memories: In order to fully utilize the computation
blocks and increase the decoding throughput, dual memories
are adopted such that the memory A is storing the accumulated
check-to-variable messages in the previous iteration while
the other memory B is accumulating the check-to-variable
messages in the current iteration. Furthermore, their functions
either as accumulation memory B or as the other memory
A are exchanged or “ping-ponged” at the end of every iter-
ation. This is accomplished by the de-multiplexiers selected
by iteration number. Consequently, the parity check update
can be simultaneously carried out with the variable node
accumulation process, which in turn speeds up the decoding
process. Similar ideas were also presented in [9]. For each one
out of nine sections, the width of the received data memory is
(
�
���) and depth is (�
� $����
 section width). For column

sum memories A and B , each has width of (
�

���) with the

column
sum

memory
A

reverse cir−
−cular shifter alignment

circular
shifter

memory
data number

iterationreceived

from router

B

reverse alignment

to reverse router

address
generation

Fig. 5. Architecture of column sum block

same depth as received data memory. Here ��	 and ��� denote
the word-lengths of received data and accumulated check-to-
variable message � ��� , respectively.

Due to the widened word in our memory structure, the
addressing generation is very simple. For each block in � � ,
the address always starts from the address offset, which is
obviously changed for different blocks. Then at each clock
cycle, it is counted up to (address offset - 1) and wraps
around to zero if reaching the last memory address of that
block. Received data memory and column sum memory A
share the same addressing while for column sum memory B
the addressing is delayed by two clock cycles because of the
latency introduced by the (reverse) alignment blocks.

2) Alignment and Reverse Alignment Blocks: The align-
ment and reverse alignment blocks exist because of the fol-
lowing two reasons. First, data stored in the received data
memory and column sum memory A are all in the column
order for the purpose of variable node accumulation while the
data going to the reverse router should be in the right row order
for PAB operations. Similarly, the data coming from router
via PCUB is in the row order while the accumulation process
within CSB should be in the column order. Actually, this is
exactly the information exchange or message passing between
variable nodes and check nodes. Second, as mentioned before,
different blocks in �	� have different offsets, which could
be transformed into two parts: address offset and data offset
because of the memory’s matrix structure. They can be simply
calculated as follows:

<���� ����� 	
 � � � � <�� �
�
 �
 <���� ����� 	 <���� ��� � � <�� �
��
 : : � : 2 � � �
�� � < �

 ��� � � � � <���� ����� 	 � <���� ������$��
6�
 : : � : 2 � � �
�� � < ��� (4)

As an example, assume prime number m is set to 337 and
parallel factor is 24, the alignment issue can be described as in
Fig. 6. Further assume that the address offset for certain block

is addr (0
�

addr
�

14). At clock cycle t, the word read
from memory address addr is stored in an external register.
At the next clock cycle t+1, the word at (addr+1) is first read
out of the memory. Then its first part B1 and second part of
the external register contents A2 are serially concatenated to
construct the shifter input. The shifter input and its associated
shift value that is solely dependent on the data offset then flow
into a circular shifter, which will output the right-ordered word
representing the messages of first 24 consecutive rows.

Finally, the reordered word is written into the column sum
memory. In addition, the second part of the newly read word
corresponding to addr+1 B2 is written back into the register
space that was previously occupied by A2.

In other words, in one clock cycle the alignment process
involves read-concatenate-shift-write operations.

external register:

shifter input:

coumn sum memory

A1

B1 A2t+1

t+1 B1A2336

0 0

A1
B2
A2

B1

23

14

data offset

addr+1
addr

A1 A2
B2t+1

t

shifter output:

Fig. 6. Concept of alignment

It is worth mentioning that since the prime number m can
not be divided by parallel factor p, the number of valid data
entries in the last memory address is always less than parallel
factor. In this case, all other data entries of that memory word
should be set to some special values (dummy data), which
we called “gap closing”. In general, following four phases
exist for alignment process in each block. When the memory
addressing is:

1) Equal to the address offset: write the first word of current
block from router into the external register, also write
the last word of previous block into the accumulation
memory B;

2) Between address offset and last memory address: read
from and write into the same memory address. However,
the reading operation is needed only when there is
accumulating effect, i.e., the processed block is not the
first one in its corresponding column of ��� ;

3) Equal to the last memory address: read and write only
the valid data excluding the dummy data from/to the
last memory address. Use extra register to hold the new
incoming data from router;

4) Between 0 and (address offset - 1): read from and write
to the same memory address with different shift values
due to the ”gap closing” effect. Actually the new shift
value is one more than that in the phase 2.

Compared to the alignment block, reverse alignment block
is relatively simpler since only reading operations are involved.
It also has four similar phases in spite of following important

differences:
� Different data bus sizes due to different input word-

lengths. In our design, the wordlength is 6 bits for
alignment block while it is 7 bits for reverse alignment
block;� For the reverse alignment block, only the last memory
word sent to reverse router with address of (address
offset - 1) has both valid and dummy data. While for
the alignment block, the word containing both valid and
dummy data is the one associated with the last memory
address of 14, which is not necessarily the last memory
word coming from the router;� The shift values of both blocks are p’s complement, i.e.,
if the shift value in alignment block is s, the shift value
in the reverse alignment block is p - s.

3) Circular Shifter and Reverse Circular Shifter: Circular
shifter is always immediately applied after alignment block.
Given any p inputs and shift value in the range of 0 to (p - 1),
the shifter output will be in the expected order. Here p stands
for parallel factor. The circular shifter could be generally
implemented by �����
	���
������ layers of multiplexers where
each layer is selected by the binary encoded bits of the shift
value. Same for the reverse circular shifter.

IV. FPGA IMPLEMENTATION

Based on the architectures described above, a rate 1/2
irregular LDPC code decoder with N = m � k = 337 �
24 = 8088 bits was described in VHDL and synthesized to
a Xilinx Virtex-II XC2V8000ff1152 FPGA. The maximum
number of iterations is set to 25. Table 1 shows the resource
usage information for the major blocks in the decoder.

Table 1. Synthesis results for the major blocks
component number register RAM/ROM

name of LUTs bits usage
R memory 2349 35 32 18Kb

BlockRAMs
PAB 6161 - -

PCUB 9254 5 1920 (ROM32x1)
Router 1170 - -

Reverse router 1360 - -
CSB 52327 6739 -

Note that since distributed SelectRAM are used in CSB
blocks, it is listed in the LUTs usage instead of the RAM/ROM
usage. Obviously, CSB utilizes more than half of the slices. As
the parallel factor is 24, the number of clock cycles to decode
one frame of 4044 information bits is �����������������!
�#"$�%�& ('��
per iteration. According to our initial synthesis results, the
estimated clock frequency is 44 MHz, thus the information
decoding throughput will be around ���)�*��+����,�,-.
'��%�/����021
40 Mbps. The timing is expected to be further improved if
register banks are placed on both sides of PCUB and inside
CSB to obtain the pipelined decoder.

V. CONCLUSIONS

In this paper, a new decoder architecture with its FPGA
implementation is presented for IPP constructed irregular
LDPC codes. Detailed memory addressing generation schemes
and related alignment issues are also discussed. Compared
to other LDPC implementations, our decoder achieves not
only better coding gain but also higher decoding throughput
although relatively larger device is needed. With the maximum
25 iterations and parallel factor of 24, our rate 1/2, 8088
bits irregular LDPC decoder can achieve the information
decoding throughput up to 40Mbps. The early stopping circuit
is also embedded to reduce the overall decoding latency and
power consumption. Furthermore, with the large degree of
architecture sharing, the decoder could be extended to various
parallel factors, code rates and block sizes.

ACKNOWLEDGMENT

This work was supported by Summer Student Program
2002, Texas Instruments Inc..

REFERENCES

[1] R. G. Gallager, “Low density parity check codes”, IRE Trans. Info.
Theory, vol. IT-8, pp. 21-28, 1962.

[2] D. J. C. MacKay, R. M. Neal, “Near Shannon limit performance of low
density parity check codes”, Electronics Letters, vol. 32, pp. 1645, 1996.

[3] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity approaching irregular low-density parity-check codes”, IEEE
Trans. Inform. Theory, vol. 47, pp. 619-637, 2001.

[4] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder”, IEEE J. Solid-State Circuits, vol.
37, pp. 404-412, 2002.

[5] T. Zhang and K. K. Parhi, “A 54 MBPS (3, 6)-regular FPGA LDPC
decoder”, IEEE Proc. of SIPS, pp. 127-132, 2002.

[6] D. Hocevar, “LDPC code construction with flexible hardware implemen-
tation”, to appear in Proc. of ICC’03, 2003.

[7] D. Sridhara, T. Fuja and R. M. Tanner, “Low density parity check codes
from permutation matrices”, Conf. on Inform. Sciences and Systems, John
Hopkins University 2001.

[8] M. Chiani, A. Conti, A. Ventura, “Evaluation of low-density parity-check
codes over block fading channels”, Proc. ICC, vol. 3, pp. 1183-1187,
2000.

[9] E. Boutillon, J. Castura and F. R. Kschischang, “Decoder-first code
design”, Proceeding of int’l symp. on turbo codes and related topics,
pp. 459-462, Sept. 2000.

