LDPC Code and Decoder Design for Gbps
Systems.

Jeremy Thorpe
October 16, 2002

Abstract

Low-density parity check codes offer near Shannon limit performance
on many channels with very low-complexity decoding. Current state-of-
the-art decoders perform this decoding in serial, or with a limited number
of operations in parallel. However, for extremely high throughput sys-
tems, an available strategy is to perform all operations in a single iteration
in parallel over the entire LDPC code graph. This thesis proposal deals
with the two primary problems impeding the implementation of fully par-
allel decoder implementation, namely wiring complexity and logic com-
plexity.

1 Background

Forward error-correcting codes are used in applications ranging from computer
memory to CD’s to cell phones. Highly efficient coding systems, capable of
reliably decoding information transmitted over noisy channels at rates close to
the Shannon limit, have historically been used first by space agencies in deep
space missions and are now proliferating into the consumer market in wireless
networking.

One of the recent advances in error-correcting systems is the (re-)discovery
of iterative decoding algorithms, in which each codeword symbol is estimated
first from the channel, and subsequently from other symbols based on the code
structure. Such iterative algorithms, often referred to as turbo-decoding, mes-
sage passing, or belief propagation have achieved an astonishing improvement in
the data rate achievable over a fixed channel with fixed error tolerance. One
class of iteratively decodable codes, low-density parity check (LDPC) codes,
shows performance exceptionally close to the Shannon limit

2 Proposed Research

The structure of LDPC codes is specified by a graph in which there are variable
nodes, check nodes, and edges connecting check nodes to variable nodes. The



standard decoding algorithm, known as belief propagation (BP), is specified with
respect to this graph. In BP, likelihood functions are recursively computed by
each node in the graph, and a message containing this information is transmitted
along each edge.

One of the great promises of this algorithm is that it can in principle be
implemented by fully parallel hardware. In such a scheme, the graph would be
laid out on in two-dimensions in VLSI technology. Each node in the graph would
be instantiated by a hardware module able to carry out a simple computation,
and each edge would be instantiated by a wire connecting the variable node to
the check node. Since the performance of LDPC codes depends strongly on the
size and randomness of the associated graph, there are certain problems that
must be solved before this scheme is practical.

In a "completely" random graph (of a given degree profile) with a random
layout has each edge spans approximately the dimension of the graph. Since the
number of nodes grows the same as the number of edges, it can easily be seen
that the wiring complexity grows faster than the logic complexity for graphs of
increasing size. On the other hand, for graphs that are explicitly constructed
to have very short edges, theoretical predictions and simulations of codes on
random graphs will not in general apply, and performance will suffer in practice.
However, there exist well known algorithms such as simulated-annealing and
greedy graph-construction algorithms which are able to trade a small amount
of performance for a huge reduction in wiring complexity (see publications).
In addition, bounds on some basic graph-theoretic quantities related to code
performance, such as diameter and girth, can be derived in terms of wiring
complexity. I propose to investigate the behavior of various code-construction
algorithms, and compare this performance to analytical bounds to the extent
possible.

A separate problem that must be solved for parallel decoders to become
practical involves the messages and computations themselves. According to
the BP equations, each node must be able to at least add and multiply real
numbers. In computer simulations, this is normally accomplished by floating-
point arithmetic. However, floating point numbers are many bytes long, and
floating point arithmetic units take many thousands of transistors. By con-
trast, one of the very first message-passing algorithm, referred to as Gallager
Algorithm A, uses only a single bit as a message and has logic that can be im-
plemented in a very small number of gates. Of course, this algorithm requires
a much better channel than the BP algorithm to achieve the same output error
probability. Not surprisingly, there does exist a trade-off between complexity
and performance. I propose to investigate this trade-off and characterize it to
the extent possible.



