LDPC Codes: Design and Shortcomings

Kenneth Andrews

March 26,2001

1 Introduction

The literature consistently reports that LDPC codes do not have an error floor, but my
simulations always find one. Curiously, researchers report no difficulty in this matter, and
yet never provide sufficient information to duplicate their results. Feeling frustrated, this
memo is intended to concisely document my algorithms so others can consider them and
provide comments.

2 LDPC Decoding Algorithm and Clipping

Let the transmitted symbols be x € {+1, —1} and the received symbols be y = z+n where n
is a zero-mean Gaussian random variable with variance 0. The standard decoding equations
are:

where v; and u; are the messages sent from the variable nodes and from the check nodes
along edge j, respectively. When using double precision arithmetic, tanh_l(l — 5.56 X
107'7) = 18.715, and for arguments closer to 1, it evaluates to infinity. Hence messages u;
are constrained in magnitude to £2(18.715) = +37.43.

We may improve this situation with a change of variables. Let

w =e", u; =e",andv; = e".

Then
vi=w]]u
i£]
1
uj = #T)i where z # y = + oy
i T+y

Because the largest finite value in double precision arithmetic is about 1.797 x 103%® and
the evalution of v, # ¥, requires computing the product 7,v,, messages ¥; are constrained

1

to V1.797 x 10308 = 1.34 x 10*%*. A similar constraint applies to small numbers to avoid
denormalized double precision values, so we restrict 7; to be larger than the reciprocal of this
number as well. In the original variables, v; is effectively constrained to +log(1.34 x 10%%) =
£354.89. While this constraint applies to v; rather than u;, it clearly provides a substantially
larger range than the standard equations. Simulations of Gaussian density evolution behavior
confirms this analysis.

3 Parity Check Matrix Generation

The behavior of the code is determined by the parity check matrix, so the algorithm used
to construct it is critically important. I've done my best to duplicate the work of [1].
Richardson, Shokrollahi, and Urbanke state on page 624 that for frame length 10%, the
maximum variable degree used is 20. From their Table II on the same page, they list their
suggested degree distribution with this maximum degree for the BIAWGNC (Binary Input
Additive White Gaussian Noise Channel), and I used this distribution. The authors give
some further clues on the H matrix construction:

For length 103, the error rates are given for systematic bits. (A specific encoder
was constructed.) For length 10* and above, the error rate is given over all of
the bits in the codeword. These graphs were not chosen entirely randomly. The
degree-two nodes were made loop-free for lengths less than 10° and, in the length
10% case, all of them correspond to nonsystematic bits. ... For shorter lengths
[< 10°] some small loop removal was performed.

My H matrix generation algorithm performs all of these optimizations as follows. First,
sequences of variable nodes and check nodes are generated. The edge degree distributions
in [1] are translated into node degree distributions, multiplied by the block length N, and
rounded as required to match the sums and first moments of the edge and node degree
distributions. A set of variable nodes are generated with these degrees and put in random
order; the same is done for the check nodes. The result is a sequence of variable nodes and a
sequence of check nodes, each node with a set of “sockets” where edges are to be attached.

Next, the degree-2 variable nodes are connected to check nodes in an entirely loop-free
way. Imagine that each check node is an island, each with a unique name. The first degree-2
variable node is taken, two check node sockets are selected at random, and if they belong to
different islands, edges are drawn to the variable node. These edges connect the islands (via
the variable node) into one island, so the old names are discarded and they are given one
new unique name. The next degree-2 variable node is taken, this island-connecting process
is repeated, and so on. When complete, the resulting “degree-2 subgraph” is a forest, i.e.
it consists of one or more trees. These edges remain fixed throughout the rest of the design
process.

Next, the remaining edges are placed and parallel edges (length-2 loops) are removed.
The sequence of remaining variable node sockets are connected to the remaining check node
sockets by picking a random permutation. Parallel edges are identified (by sorting the edges
according to the variable node and check node each connects and finding matches), and
all but the first edge of each parallel set is flagged for rerouting. To increase the number of

options, a few more (0.01N +5) of the edges placed in this paragraph (those not connected to
degree-2 variable nodes) are also flagged. The flagged edges are deleted, and a new random
permutation is used to reconnect the now-vacant sockets. This process is repeated until no
parallel edges remain.

Finally, length-4 loops are removed. Length-4 loops are identified by computing HH7”
and looking for off-diagonal entries M; ; greater than 1 (each entry represents 3 (") length-4
loops). For each loop found, one of the four edges is selected; if a degree-2 variable node is
involved, one of the other two edges is selected. One other edge in the graph (with terminal
nodes different from that of the selected edge, and not connected to a degree-2 variable node)
is also selected at random, and the check node connections of the two are reversed. When
complete, HH" is recomputed and the process is repeated until no more length-4 loops are
found.

Because this algorithm and its implementation has proven error-prone, all claimed prop-
erties have been verified by entirely different methods. First H is constructed explicitly
(most of the design algorithm does not use H, but operates on lists of edges and their termi-
nal nodes). Degree distributions are verified using histograms of the row and column sums
of H. Parallel edges are trivially detected by finding entries > 1. The degree-2 subgraph
criterion is verified by taking only the columns of H with sum 2, and iteratively pruning
the leaves of this subgraph by alternately deleting rows with sum 1 and columns with sum
1. If this process fails to terminate with a null matrix, then a loop must exist. Finally,
for each variable node, the length of the smallest loop to which it belongs is found (by an
algorithm like that used to determine d,,;, from a convolutional code’s trellis), and verified
to be greater than 4.

4 LDPC Encoder

In [1], the authors did not construct an encoder for codes longer than 1000 symbols. For the
codes presented here, of length up to 10,000 symbols, I have found no problem constructing
a low-complexity encoder using Algorithm CHT from [2]. The result is a parity check matrix
H' derived from H by a permutation of its rows and columns, and a systematic encoder with
linear-time encoding complexity. The algorithm was implemented in such a way that all
degree-2 variable nodes are placed in the parity portion of H'.

5 Simulation Results

LDPC codes and encoders of rate 1/2 with block lengths N = 10* and N = 10* were
generated, and simulations were run, using the algorithms described in the previous sections.
Encoded random binary messages were used because biased decoders may generate erroneous
statistics when run exclusively with the all-0 codeword. The equations used by the decoder
are not exactly symmetric (due to details of the internal floating point arithmetic) so this
concern must be taken seriously, though simulations have found no measurable bias. A
stopping rule was used to increase the average decoder speed, which terminated the iterative
decoding when a codeword was found.

ST e T

Error Rates
=
o
&

10"

10

10° L
0 0.5 1 15 2 2.5 3
SNR (Eb/No)

Figure 1: (N=1000, K=500) LDPC code, 50 and 200 iterations

Figure 1 shows performance curves for a code of length N = 1000 with a maximum of 50
and 200 iterations; tables 1 and 2 show the raw data. From top to bottom, the solid curves
show symbol error rate (SER) with 50 iterations, bit error rate (BER) with 50 iterations,
SER with 200 iterations, and BER with 200 iterations. Note that the BER curves are a
little better than the SER curves because symbol errors are more likely to occur in the
parity portion of the codeword than in the systematic portion. From top to bottom, the
dashed curves show codeword error rate (CER, the fraction of decoded frames that have
one or more code symbols in error) with 50 iterations, frame error rate (FER, the fraction
of decoded frames that have one or more message bits in error) with 50 iterations, and
the virtually coincident CER and FER curves with 200 iterations. The dotted curves show
the detected codeword error rate (DCER, when the LDPC decoder completes its maximum
number of iterations without finding any codeword), again for 50 and 200 iterations. The
significant gap between the DCER and CER curves show that many of the codeword errors
occur when the decoder finds a valid but incorrect codeword.

Figure 2 shows performance curves for a code of length N = 10,000 with a maximum of
50 and 200 iterations; tables 3 and 4 show the raw data. The curves are ordered in the same
way as those for the shorter frames, and show the same trends.

6 Shortcomings

The most notable characteristic of the simulations is a sharp error floor. Analysis shows that
in part, this is due to low weight codewords, despite David MacKay’s statements, “Gallager

Q.
(o~]

blocks Dblk_ers bit_ers cw_ers sym_ers fails

0.000000 100 100 6572 100 13824 100
0.500000 122 100 4780 100 10660 100
1.000000 340 100 3227 100 7529 100
1.200000 571 100 2496 100 5860 96
1.400000 1101 100 2015 103 4940 99
1.600000 2870 100 1036 104 2970 99
1.800000 5760 100 890 101 2542 81
2.000000 10735 100 1115 105 2903 93
2.500000 46514 100 1031 109 2577 84
3.000000 117313 100 939 103 2257 69
Table 1: (N=1000, K=500) LDPC code, 50 iterations

dB blocks Dblk_ers bit_ers cw_ers sym_ers fails
0.000000 100 100 6569 100 13840 100
0.500000 124 100 5032 100 11138 100
1.000000 391 100 3821 100 8674 100
1.200000 720 100 2790 101 6634 96
1.400000 1527 100 2508 100 6018 97
1.600000 3850 100 1624 102 4045 85
1.800000 9055 100 969 102 2761 87
2.000000 18212 100 725 100 2287 72
2.500000 68152 100 1122 101 2641 63
3.000000 193690 100 618 100 1608 47

Table 2: (N=1000, K=500) LDPC code, 200 iterations

Error Rates
B
o
&

10

10

10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
SNR (Eb/No)

Figure 2: (N=10,000, K=5000) LDPC code, 50 and 200 iterations

dB blocks blk_ers bit_ers cw_ers sym_ers fails
0.000000 100 100 69800 100 145085 100
0.200000 100 100 62687 100 132409 100
0.400000 100 100 42044 100 94341 100
0.600000 143 100 18303 106 45213 106
0.800000 668 100 5202 121 14221 120
0.850000 1464 100 2534 137 8533 137
0.900000 2976 100 2556 155 8693 153
0.950000 5318 100 2845 138 8015 131
1.000000 10319 100 1468 141 5236 133
1.050000 14530 100 3248 131 8948 119
1.100000 19144 100 6921 123 17091 106
1.150000 24684 100 7963 122 19166 108
1.200000 26679 100 5138 114 14250 101
1.400000 62902 100 9490 110 22847 87
1.600000 98300 100 7151 113 18307 87

Table 3: (N=10,000, K=5000) LDPC code, 50 iterations

dB blocks blk_ers bit_ers cw_ers sym_ers fails
0.000000 100 100 70182 100 145255 100
0.200000 100 100 58490 100 125637 100
0.400000 129 100 49067 100 108058 100
0.600000 629 100 33408 101 77360 99
0.800000 8727 100 24552 101 56645 88
0.900000 21598 100 7001 101 18769 76
1.000000 31259 100 7171 104 18194 78
1.100000 38672 100 5176 101 13281 77
1.200000 68843 100 5789 106 14531 76
1.400000 86454 100 6850 105 16112 57
1.600000 153325 100 4084 104 10660 65

Table 4: (N=10,000, K=500) LDPC code, 200 iterations

codes do not typically show such an error floor” [3], “Gallager codes, in contrast [to turbo
codes], show no such error floor, and it has been proved that they have asymptotically good
distance properties.” [4], and “In all our experiments with Gallager codes of block length
greater than 1000 and column weight at least 3, undetected erorrs have never occured”
[5]. Other researchers (Hui Jin, Flarion published curves, [1]) also claim without providing
conclusive results that LDPC codes either have no error floor, or that it is very far down.

It is not clear how to systematically identify low weight codewords in an LDPC code.
One method is to use an LDPC simulation, with the all-0 codeword and the SNR set near
the low end of the error floor, and log undetected decoder errors, i.e. where the decoder
selected an incorrect codeword. This procedure, applied to the (N = 10000, K = 5000)
rate 1/2 LDPC code used in the simulations, identified one codeword of weight 9, one of
weight 11, two of weight 12, and one of weight 18. Because the decoder was only run for
about 18 hours, there may be more unidentified codewords with weights of 12 or above, but
probably no unidentified ones of smaller weight. This distribution of low weight codewords
depends on the particular random code constructed, but this result appears to be typical.
The (N = 1000, K = 500) code has codewords of weights 7,10,11,12,13,14,16,17,19, and 21,
and may have others of low weight.

The low weight codewords analyzed so far all involve two variable nodes of degree 3 and
all remaining variable nodes of degree 2. The two degree-3 nodes are connected to six check
nodes of course, and those check nodes are interconnected by three chains built from degree-2
variable nodes. Various modifications to the LDPC code design algorithm could probably
prevent patterns of this particular type, potentially lowering the error floor. Alternatively,
the check matrix could be built without using any degree-2 variable nodes, with a probable
penalty in Ej,/Ny threshold.

Unfortunately, these modifications would lower but not eliminate the apparent error
floor, as illustrated by the DCER curves. The undetected codeword errors cause very few
symbol errors, so these modifications would likely have very little impact on the SER curves
(this cannot be stated with certainty because the presence of low weight codewords might
“confuse” the decoder and thereby affect its more general convergence behavior as well).

Perhaps the SER curves could be lowered by performing more iterations with these frames,
but extrapolation from the 50 and 200 iteration results is not encouraging.

References

1]

[5]

Richardson, Shokrollahi, Urbanke, Design of Capacity-Approaching Irreqular Low-
Density Parity-Check Codes, I'T Trans, Feb 2001, pg. 619.

Richardson, Shokrollahi, Efficient Encoding of Low-Densith Parity-Check Codes, 1T
Trans, Feb 2001, pg. 638.

MacKay, Gallager Codes - Recent Results, ftp://www.inference.phy.cam.ac.uk/pub/mackay /sparsecodes

MacKay, Turbo Codes are Low Density Parity Check Codes,
http://www.inference.phy.cam.ac.uk /mackay /turbo-ldpc.ps.gz

MacKay, Wilson, Davey, Comparison of Constructions of Irreqular Gallager Codes,
http://www.inference.phy.cam.ac.uk /mackay /turbo-ldpc.ps.gz

