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A Puzzle

• X = (X1, X2, X3, X4, X5, X6) is an unknown binary vec-
tor with components ±1, selected randomly from the 64
possibilities. Thus initially we have

Pr{Xi = +1} = Pr{Xi = −1} = 1/2, for i = 1, . . . , 6.

• Suppose we gather the following “evidence” about X:

Y1 = X1 + X2 − X3 = −1
Y2 = X3 − X4 − X5 = +1
Y3 = X1 + X5 + X6 = +1

• What can be deduced about X, given Y = (Y1, Y2, Y3)?
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Answer to the Puzzle

• Answer: Only three values of X are consistent with the
evidence Y :

(+1,−1,+1,+1,−1,+1)
(+1,−1,+1,−1,+1,−1)
(−1,+1,+1,−1,+1,+1),

so that
Pr{X1 = +1|Y } = 2/3
Pr{X2 = +1|Y } = 1/3
Pr{X3 = +1|Y } = 1
Pr{X4 = +1|Y } = 1/3
Pr{X5 = +1|Y } = 2/3
Pr{X6 = +1|Y } = 2/3.
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The General Puzzle – A Simplified Sensor Network

• X = (X1, X2, . . . , XN ), a list of N uniform i.i.d. ±1
random variables, represents an unknown enviroment.
• There are M remote sensors S1, . . . , SM , each character-
ized by a sparse vector Sj = (sj,1, . . . , sj,n) whose nonzero
components are ±1.
• The measurement taken by the jth sensor Sj is Yj =
X · Sj . Thus the aggregate evidence about the environ-
ment provided by the sensor network is the vector Y =
(Y1, . . . , YM ).
• Example. N = 6 and M = 3:

S1 = (+1,+1,−1, 0, 0, 0)
S2 = ( 0, 0,+1,−1,−1, 0)
S3 = (+1, 0, 0, 0,+1,+1)
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A Factor Graph for the Problem
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An Experiment

• An “environment” X = (X1, . . . , XN ) is chosen at random
from {+1,−1}N .
• A “sensor network” (S1, . . . ,SM ) is selected at random,
where each Sj has exactly s nonzero (±1) components.
• “Evidence” Yj = X · Sj , for j = 1, . . . , M , is generated.
• Belief propagation is run, using the evidence (y1, . . . , yM ),
and returns a set of beliefs (approximate a posteriori prob-
abilities) (bi(+1), bi(−1)), for i = 1, . . . , N .
• The “score” of the algorithm’s output is defined as

∆ = − 1
N

N∑
i=1

log bi(Xi).
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Another Puzzle

Why did we use − log b(X) as the penalty measure?

Anybody?
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The Oracle Judging Problem

• An event E with n possible outcomes {E1, . . . , En} is
about to occur.
• An oracle makes a “soft” prediction about the outcome:

b = (b1, . . . , bn)

(bi = oracle’s “belief” in outcome Ei,
∑

i bi = 1.)
• Problem: How shall we measure the accuracy (or inaccu-
racy) of b as a predictor of E?
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Examples

• A bookmaker quoting odds on a horserace. • A TV weath-
erman predicting tomorrow’s weather (Sunny, Cloudy, Rain,
Typhoon, . . . .)
• A number-theorist predicting the number of distinct prime
factors of an integer selected at random between 1 and 1020.
• A Go-playing algorithm predicting the next move of a
9-dan player.
• A soft-decision decoding algorithm predicting whether an
information bit is a zero or a one.

...
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Penalty Functions for Oracles

• Let ∆i(b) denote the penalty charged to the belief vector
b = (b1, . . . , bn) if the actual outcome is Ei. For example,

∆i(b) = − log bi

= (1 − bi)2

= 1/bi − 1
...

What properties should ∆i(b) have?
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Some Innocuous Restrictions

Property 1.
∆i(b) ≥ 0,

i.e., penalties are nonnegative.

Property 2.
∆i(b) = 0 if bi = 1,

i.e., there is no penalty if the oracle predicts the actual out-
come with certainty.
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The Sine Qua Non Axiom

Axiom 0. If p = (p1, . . . , pn) and b = (b1, . . . , bn) are ar-
bitrary probability vectors,

n∑
i=1

pi∆i(p) ≤
n∑

i=1

pi∆i(b)

(p · ∆(p) ≤ p · ∆(b)),

with equality iff b = p.

This says that if the event E has a priori probability density

Pr{E = Ei} = pi,

then the belief about E with the minimum average penalty
is p itself.
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Unfortunately, there are Infinitely Many
Penalty Functions Which Satisfy the SQN Axiom:

Theorem. If C is a convex set in Rn, like the one depicted,

∆(p) = argmin
c∈C

(p · c)

satisfies Axiom 0. (And Conversely.)

������
������
������
������
������
������
������C

e.g. C = {xi :
∑

i 2−xi ≤ 1}

Another Axiom is needed!



A Possible Further Axiom:

Axiom 1. (The No Partial Credit Axiom.)

∆i(b) = f(bi)

for some continuous function f(x).

In words, the penalty assessed depends only on the belief
assigned by the oracle to the actual outcome (and therefore
not on the beliefs in the other outcomes).

This seems reasonable, at least when there is no notion of
“closeness” of an incorrect prediction.



Now we’re getting somewhere!

Theorem. If Axioms 0 and 1 hold, and if n ≥ 3, then the
only possible penalty function is

∆i(b) = − log bi,

where the base of the logarithm is arbitrary.

Corollary. In this case we have

p · ∆(b) = H(p) + D(p ‖ b),

i.e., if the a priori probability vector is p, the minimum
expected penalty is H(p), with equality only for the oracle
whose belief exactly matches the a priori distribution.



(The Case n =  is Ugly)

Theorem. Let n = 2. Then Axioms 0 and 1 hold if and
only if

∆i(b) = f(bi),

where f(x) is of the form

f(x) =
∫ 1

x

g(t)
t

dt,

for some function g(t) which satisfies

g(t) ≥ 0 and g(t) = g(1 − t) for all t ∈ (0, 1).
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(Some n =  Examples)

g(t) = 1 ⇒ f(x) = − log x

g(t) = 2t(1 − t) ⇒ f(x) = (1 − x)2

g(t) = 12t2(1 − t)2 ⇒ f(x) = (1 − x)3(1 + 3x)
...
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An Extension — The Metric Case.

Suppose there is a distance measure D = (di,j) between the
possible outcomes. (Some wrong guesses are better than
others.)

1 2

34

D =




1 2 3 4
1 0 1 2 1
2 1 0 1 2
3 2 1 0 1
4 1 2 1 0




Call the corresponding penalty function ∆(D, b).
What properties should ∆(D, b) have?



The Metric Case —Continued.

• ∆i(D, b) = − log bi will no longer do:

1

3

2ε

D =




1 2 3
1 0 ε 1
2 ε 0 1
3 1 1 0




Arguably b = (b1, b2, b3) and b′ = (b2, b1, b3) should be as-
sessed identical penalties, as ε → 0.



The Metric Case —Continued.

• The average distance between the belief vector b =
(b1, . . . , bn). and the outcome i is

d(b, i) =
n∑

j=1

di,jbi,

• It is plausible to require that ∆i(D, b) be an increasing
function of d(b, i). (The farther b is from i, the larger the
penalty.)
• So we might propose the

Strong Metric Axiom .

∆i(b) = f (d(b, i)) ,

where f(0) = 0 and f(x) is an increasing function of x.



The Strong Metric Axiom is Too Strong!

The Strong Metric Axiom plus the SQN axiom requires that

n∑
i=1

pif (d(p, i)) ≤
n∑

i=1

pif (d(b, i)) ,

for all possible priors p and beliefs b.

Unfortunately, this won’t work.



Why it won’t work.

• Example.

1 32 D =




1 2 3
1 0 1 2
2 1 0 1
3 2 1 0




Consider the two belief vectors b1 = (1/3, 1/3, 1/3) and b2 =
(0, 1, 0), with average distances from (1, 2, 3) given by

(d(b1, 1), d(b1, 2), d(b1, 3)) = (1,
2
3
, 1), and

(d(b2, 1), d(b2, 2), d(b2, 3)) = (1, 0, 1).

If b1 is the prior, the SM axiom plus the SQN axiom there-



fore requires

1
3
f(1) +

1
3
f(2/3) +

1
3
f(1) ≤ 1

3
f(1) +

1
3
f(0) +

1
3
f(1),

i.e.,
f(2/3) ≤ f(0) = 0,

which is false, since f(x) is assumed increasing.
• In other words, if nature chooses (1/3, 1/3, 1/3), the met-
rically optimal belief is (0, 1, 0), and not (1/3, 1/3, 1/3).
• (This is obvious to a game theorist.)



Some Weaker Metric Axioms

Again: There is a distance measure D = (di,j) between the
possible outcomes. (Some wrong guesses are better than
others.) What properties should ∆(D, b) have?

• Continuous in D, i.e., if D → D′, then ∆(D, b) →
∆(D′, b).
• Homogeneity: ∆(λD, b) = λ∆(D, b).
• Indistinguishable Outcomes: If di,j = 0 and bk = b′k if
k �= i, j, then ∆(D, b) = ∆(D, b′).

• (No partial credit) If D =


 0 1 1

1 0 1
1 1 0


 then

∆i(D, b) = − log bi.



A Possibility ?

∆i(b) = − log bi

⇓

∆i(b) = −
∫ ∞

0

log bi(r)dr,

where bi(r) denotes the probability that the oracle b is
within distance r of the outcome i:

bi(r) =
∑

{bj : Di,j ≤ r}.

This satisfies Properties (1)–(4) and satisfies SQN if D is an
ultrametric !



What is an Ultrametric?

• Ordinary metric triangle inequality:

d(x, y) ≤ d(x, z) + d(z, y). x z y

• Ultrametric triangle inequality:

d(x, y) ≤ max(d(x, z), d(z, y)).

x

z

y

(All triangles are isosceles.)



Ultrametrics Can be Represented by Trees

4
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E1 E2 E3 E4 E5

E1 0 1 2 4 4
E2 1 0 2 4 4
E3 2 2 0 4 4
E4 4 4 4 0 3
E5 4 4 4 3 0






Example of the Ultrametric Penalty Function

∆i(b) = −
∫ ∞

0

log bi(r) dr

4
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1

E1 E2

E3 E4 E5

∆1(b) = − log b1 − log(b1 + b2) − 2 log(b1 + b2 + b3)
∆2(b) = − log b2 − log(b1 + b2) − 2 log(b1 + b2 + b3)
∆3(b) = −2 log b3 − 2 log(b1 + b2 + b3)
∆4(b) = −3 log b4 − log(b4 + b5)
∆5(b) = −3 log b5 − log(b4 + b5)



Another Example

∆i(b) = −
∫ ∞

0

log bi(r) dr

E1 E2 E3 E4 E5

1

∆1(b) = − log b1

∆2(b) = − log b2

∆3(b) = − log b3

∆4(b) = − log b4

∆5(b) = − log b5



Conclusions and Open Questions

• We recommend using ∆i(b) = − log bi, even with n = 2.

• Can the Weak Metric Axioms be satisfied for an ordianry
metric?
• Is the penalty function

∆i(b) = −
∫ ∞

0

log bi(r) dr

unique?

• The End. Any Questions?
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