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A Puzzle

o X = (X3, X5, X3, X4, X5, Xg) is an unknown binary vec-
tor with components +1, selected randomly from the 64
possibilities. Thus initially we have

PI‘{XZ:—I-l}:PI'{XZ:—l}:l/Q, fOTizl,...,6.

e Suppose we gather the following “evidence” about X:

Vi = X; + Xo — X3 =1
Yy = Xs—X4— X5  =+1
Y; = X3 + X5+ Xg = +1

e What can be deduced about X, given Y = (Y7, Y5, Y3)?
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X1+ Xo — X3 =1
Xs—X4— X5 =+1
X + X5+ Xg = +1

Anybody 7 ...



Answer to the Puzzle

e Answer: Only three values of X are consistent with the

evidence Y :
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Answer to the Puzzle

e Answer: Only three values of X are consistent with the

evidence Y :
(+1,—1,+1,4+1,—1,+1)

(+1,—1,+1,—-1,4+1,—1)
(—1,+1,+1,—1,4+1,+1),

so that
Pr{X; =+1Y} =2/3

Pr{X, = +1]Y} = 1/3
Pr{Xs=+1Y} =1

Pr{X,=+1]Y} =1/3
Pr{Xs = +1|]Y} = 2/3
Pr{Xs = +1|V} = 2/3.
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The General Puzzle — A Simplified Sensor Network

e X = (X1,X5,...,Xy), a list of N uniform ii.d. =+1
random variables, represents an unknown enviroment.

e There are M remote sensors Sq,...,S5), each character-
ized by a sparse vector S; = (s;1,...,5;,) whose nonzero
components are =+1.

e The measurement taken by the jth sensor S; is Y; =
X - S;. Thus the aggregate evidence about the environ-

ment provided by the sensor network is the vector Y =
(Y1,..., YY) .

e Example. N =6 and M = 3:
S1 = (+1,+1,-1, 0, 0, 0)
So=( 0, 0,+1,—-1,—-1, 0)
S;=(+1, 0, 0, 0,+1,41)



A Factor Graph for the Problem
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An Experiment

e An “environment” X = (X3,..., Xy) is chosen at random
from {+1, —1}*.
e A “sensor network” (S7,...,Sn) is selected at random,

where each S, has exactly s nonzero (+1) components.
e “Evidence” Y; = X - §;, for j =1,..., M, is generated.

e Belief propagation is run, using the evidence (y1,...,yn),
and returns a set of beliefs (approximate a posteriori prob-
abilities) (bz(—|—1), bz(—l)), for ¢ = 1, . o ,N.

e The “score” of the algorithm’s output is defined as

1 N



Experimental Results, N = 20, s = 10
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Experimental Results, N = 50, s = 10
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Why did we use —logb(X) as the penalty measure?

Anybody?
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The Oracle Judging Problem

e An event F with n possible outcomes {FEy,..., E,} is
about to occur.

e An oracle makes a “soft” prediction about the outcome:
b= (b,...,by)

(b; = oracle’s “belief” in outcome Ej;, > . b; = 1.)

e Problem: How shall we measure the accuracy (or inaccu-
racy) of b as a predictor of E?
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Penalty Functions for Oracles

e Let A;(b) denote the penalty charged to the belief vector
b= (by,...,b,) if the actual outcome is F;. For example,

A;i(b) = —logb;
= (1 — b;)?
=1/b; — 1

What properties should A;(b) have?
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Some Innocuous Restrictions

Property 1.

i.e., penalties are nonnegative.

Property 2.
A;(b)=0 ifb; =1,

i.e., there is no penalty if the oracle predicts the actual out-
come with certainty.
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The Sine Qua Non Axiom

Axiom 0. If p = (p1,...,pn) and b = (by,...,b,) are ar-
bitrary probability vectors,

ZpiAi(p) < ZpiAi(b)
(p-A(p) < p- A(b)),

with equality ift b = p.
This says that if the event E has a prior: probability density
PI‘{E = Ez} — Pq,

then the belief about E with the minimum average penalty
is p itself.



Unfortunately, there are Infinitely Many
Penalty Functions Which Satisfy the SQN Axiom:

Theorem. If(C' is a convex set in R™, like the one depicted,

A(p) = argmin(p - c)
ccC

satisfies Axiom 0. (And Conversely.)

eg. C={x;:) 27" <1}

Another Axiom is needed!



A Possible Further Axiom:

Axiom 1. (The No Partial Credit Axiom.)

for some continuous function f(x).

In words, the penalty assessed depends only on the belief
assigned by the oracle to the actual outcome (and therefore
not on the beliefs in the other outcomes).

This seems reasonable, at least when there is no notion of
“closeness” of an incorrect prediction.



Now we’re getting somewhere!

Theorem. If Axioms 0 and 1 hold, and if n > 3, then the
only possible penalty function is

where the base of the logarithm is arbitrary.

Corollary. In this case we have
p-Ab)=H(p)+ D(p|b),

i.e., if the a priori probability vector is p, the minimum
expected penalty is H(p), with equality only for the oracle
whose belief exactly matches the a priori distribution.



(The Case n = 2 is Ugly)
Theorem. Let n = 2. Then Axioms 0 and 1 hold if and
only if

where f(x) is of the form

fo) = [ A0 i,

for some function g(t) which satisfies

g(t) >0 and g(t) =g(1 —1t) forallt € (0,1). :

. . N . . .
N w > (S} [e2} ~
o e e L N i B i S i A i




(Some n = 2 Examples)

g(t) =1= f(z) = —logx
g(t) =2t(1 —t) = f(z) = (1 - 2)°
g(t) =12t°(1 —t)* = f(z) = (1 — 2)°(1 + 3x)




An Extension — The Metric Case.

Suppose there is a distance measure D = (d; ;) between the

possible outcomes. (Some wrong guesses are better than
others.)

. , 1 2 3 4
@ Q 1 /0 1 2 1
D_2(1012\

~ 312 1 0 1

& . 4\1 2 1 0/

Call the corresponding penalty function A(D,b).
What properties should A(D, b) have?



The Metric Case —Continued.

e A;(D,b) = —logb; will no longer do:

1 £ 2 1 2 3
1 /0 € 1
D=2]¢ 0 1
3\1 1 0
3

Arguably b = (b1,b2,b3) and b = (bs, by, b3) should be as-
sessed identical penalties, as € — 0.



The Metric Case —Continued.

e The average distance between the belief vector b =
(b1,...,b,). and the outcome 7 is

d(b,i) = Z d; ;bi,
j=1

e It is plausible to require that A;(D,b) be an increasing
function of d(b,7). (The farther b is from 4, the larger the
penalty.)

e So we might propose the

Strong Metric Axiom .

Ai(b) = f(d(b,1)),

where f(0) =0 and f(x) is an increasing function of x.



The Strong Metric Axiom is Too Strong!

The Strong Metric Axiom plus the SQN axiom requires that

> pif (d(p.i)) <Y pif (d(b,i)),
i=1 i=1
for all possible priors p and beliefs b.

Unfortunately, this won’t work.



Why it won’t work.

e Eixample.
1 2 3
1 /0 1 2
1 2 3 _
O 5 o D=211 0 1
3\2 1 0

Consider the two belief vectors by = (1/3,1/3,1/3) and by =
(0,1,0), with average distances from (1,2, 3) given by

If by is the prior, the SM axiom plus the SQN axiom there-



fore requires

l.e.,
f(2/3) < £(0) =0,
which is false, since f(x) is assumed increasing.

e In other words, if nature chooses (1/3,1/3,1/3), the met-
rically optimal belief is (0,1,0), and not (1/3,1/3,1/3).

e (This is obvious to a game theorist.)



Some Weaker Metric Axioms

Again: There is a distance measure D = (d; ;) between the

possible outcomes. (Some wrong guesses are better than
others.) What properties should A(D, b) have?

e Continuous in D, i.e., if D — D’ then A(D,b) —
A(D')b).
e Homogeneity: A(AD,b) = NA(D,b).

e Indistinguishable Outcomes: If d; ; = 0 and b, = b, if
k # 1,7, then A(D,b) = A(D,b").

e (No partial credit) If D = then

—_ O
—_ O =
O ==

A;(D,b) = —logb;.



A Possibility 7

Ai(b) = —logb;
|

Au(b) = — / " log bi(r)dr,

where b;(r) denotes the probability that the oracle b is
within distance r of the outcome 4:

bi(r) =) {bj:Di; <r}.

This satisfies Properties (1)—(4) and satisfies SQN if D is an
ultrametric |



What is an Ultrametric?

e Ordinary metric triangle inequality:

dz,y) < d(x,z)+d(z,y).

e Ultrametric triangle inequality:

d(z,y) < max(d(z, z),d(z,y)).

(All triangles are isosceles.)

< @




Ultrametrics Can be Represented by Trees
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Example of the Ultrametric Penalty Function
/ 4\
A;(b) :—/ log b;(r) dr /\ /\
0
A\

E1 E2

(b) = —log by — log(by + b2) — 21log(by + by + b3)

(b) = —log by —log (b1 + b2) — 21og (b1 + by + b3)
Asz(b) = —2logbs — 2log(by + ba + b3)

(b) = —3logbs — log(bs + b5)

(b)



Another Example

E1 E2 Eg
A1(b) = —log b,
As(b) = —log by
Az(b) = —log b3
A4(b) = —log by
(6)
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Conclusions and Open Questions

e We recommend using A;(b) = —logb;, even with n = 2.
e Can the Weak Metric Axioms be satisfied for an ordianry

metric?

e Is the penalty function

unique?

e The End. Any Questions?



