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Abstract

A polynomial-time soft-decision decoding algorithm for Reed-Solomon codes is devel-
oped. This list-decoding algorithm is algebraic in nature and builds upon the interpo-
lation procedure proposed by Guruswami-Sudan for hard-decision decoding. Algebraic
soft-decision decoding is achieved by means of converting the probabilistic reliability
information into a set of interpolation points, along with their multiplicities. The
proposed conversion procedure is shown to be asymptotically optimal for a certain
probabilistic model. The resulting soft-decoding algorithm significantly outperforms
both the Guruswami-Sudan decoding and the generalized minimum distance (GMD)
decoding of Reed-Solomon codes, while maintaining a complexity that is polynomial in
the length of the code. Asymptotic analysis for a large number of interpolation points
is presented, leading to a geometric characterization of the decoding regions of the pro-
posed algorithm. It is then shown that the asymptotic performance can be approached
as closely as desired with a list-size that does not depend on the length of the code.
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1. Introduction

Reed-Solomon (RS) codes are among the most extensively used error-control codes, with
applications ranging from magnetic recording [13], through satellite communications [4,
29], to deep-space exploration [16]. An important problem in hard-decision decoding of
Reed-Solomon codes is that of decoding beyond the error-correction radius. A break-
through in this area was achieved by Sudan [25, 11]. In the form presented in [11], the
algorithm of Guruswami-Sudan corrects any fraction of 7 < 1 — v/R erroneous positions
in a Reed-Solomon code of rate R. Thus the error-correction capability of the algorithm
exceeds the minimum distance bound (1 — R)/2 for all rates in the interval [0, 1).

Soft-decision decoding of Reed-Solomon codes is, however, an entirely different matter.
Even though the decoder can be often supplied with reliable soft-decision data relatively
easily [4], the high complexity of optimal soft-decision decoding makes full utilization of
such data prohibitive. Indeed, all the available optimal soft-decoding algorithms for RS
codes, such as [27] and its modifications [6, 21, 22], are non-algebraic and run in time that
scales exponentially with the length of the code. This makes the use of such algorithms
generally infeasible in practice. An alternative approach to the problem of efficient soft
decoding, pioneered by Forney [9, 10], is known as generalized minimum distance (GMD)
decoding. While the complexity of GMD decoding is moderate, and ultimately is of the
same order as the complexity of hard-decision decoding [2, 14, 15, 24|, the gains that
can be realized by GMD decoding are also moderate (cf. Figure1). Thus, in light of the
ubiquity of Reed-Solomon codes, efficient soft-decision decoding of RS codes is one of the
most important problems in coding theory and practice.

Our goal in this paper is to present an efficient soft-decision decoding algorithm for
Reed-Solomon codes. The algorithm significantly outperforms both the Guruswami-
Sudan list decoding [11] and the GMD-based decoding methods. For example, Figure 1
shows the performance of the three algorithms for a simple coding scheme: codewords
of the (255,144, 112) Reed-Solomon code over GF(256) are modulated using a 256-QAM
signal constellation and transmitted over an AWGN channel. More details on this can be
found in the caption of Figurel and in Section 6. We note that similar coding schemes,
although with higher-rate RS codes, are in use today on satellite communication channels.

The proposed algorithm is based on the algebraic interpolation techniques developed by
Sudan [11, 25]. To achieve soft-decision decoding, we translate the soft-decision reliabil-
ity information provided by the channel into a set of algebraic constraints. Specifically,
given the channel output vector (yi,%s,-..,¥y,) and the a posteriori transition proba-
bilities Pr(c;|y;), we iteratively compute a set of interpolation points along with their
multiplicities. We show that, at each step of the computation, this choice of interpolation
points is optimal, in a certain precise sense defined in Section 4.

Notably, the algebraic interpolation and factorization techniques of Guruswami-Sudan [25,
11] can be implemented efficiently in polynomial time. There has been a lot of research on
this topic recently [1, 7, 8, 19, 18, 23, 30]. Our soft-decision decoding procedure inher-
its these properties of Guruswami-Sudan decoding. In addition, one of the most useful
characteristics of our soft-decoding algorithm is a complexity /performance trade-off that
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Figure 1. Performance comparison for a simple coding scheme

Codewords of the (255,144, 112) Reed-Solomon code are modulated using a 256-QAM sig-
nal constellation and transmitted over an additive white Gaussian noise (AWGN) channel.
At the channel output, soft decisions are quantized to 8 bits. The different curves cor-
respond to the performance achieved by two hard-decision decoding algorithms and two
soft-decision decoding algorithms. The two hard-decision algorithms are the conventional
Berlekamp-Welch [28] decoding up to half the minimum distance and the list-decoding
algorithm by Guruswami-Sudan [11]. For the latter, asymptotic performance is shown,
assuming that the multiplicity of interpolation points tends to infinity (cf. Theorem 2). The
two soft-decision algorithms are Forney’s GMD decoding [9] and the algebraic soft-decision
list-decoding algorithm developed herein. The curve marked v describes asymptotic per-
formance for a large number of interpolation points, and hence large list-size. However,
the curve marked o shows that the asymptotic performance can be closely approached
with a finite list that is guaranteed to have at most 32 codewords (cf. Section 6).

can be chosen freely. In particular, the complexity can be adjusted to any required level

of performance within a certain fundamental bound (cf. Theorem 12).

The rest of this paper is organized as follows. The next section contains a brief overview
of Sudan’s list-decoding algorithm, as presented in [11]. Section 3 then sets the ground for
algebraic soft-decision decoding of Reed-Solomon codes. In particular, we define the con-
cepts of score and cost associated with each possible set of interpolation points. We then
give a sufficient condition for successful list-decoding in terms of these concepts. The core
of our soft-decoding algorithm is developed in Section 4, which deals with the computation
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of (the multiplicities of ) the interpolation points. In particular, we show how to iteratively
compute the interpolation multiplicity matrix so as to maximize the expected score in a
certain probabilistic model. We prove that the greedy approach produces such a matrix at
each step of the computation. Section 5 presents an asymptotic performance analysis for
our algorithm as the the number of interpolation points approaches infinity. The analysis
leads to a simple geometric characterization of the (asymptotic) decoding regions of our
algorithm. In Section 6, we show that the asymptotic performance can be approached arbi-
trarily closely with a list size that depends on the rate but not on the the length of the code
at hand. We also present simulation results for various list sizes, for both half-rate and
high-rate Reed-Solomon codes. Finally, we conclude with a brief discussion in Section 7.

2. Reed-Solomon codes and the Sudan algorithm

We first set up some of the notation that will be used throughout this work. Let F, be
the finite field with ¢ elements. The ring of polynomials over F, in a variable X is de-
noted F,[X]. Reed-Solomon codes are obtained by evaluating certain subspaces of F,[X]
in a set of points D = {x1,,...,x,} which is a subset of F,. Specifically, the Reed-
Solomon code C,(n, k) of length n and dimension £ is defined as follows:

Cy(n,k) = {(f(@1),---, f(@n)) © 21,20 €D, f(X) €F[X], deg f(X) <k} (1)

The point set D is usually taken as F, or as ]Fq*, the set of all the nonzero elements of F;.
The set of polynomials of degree less than k in F,[X] is a linear space, which together
with the linearity of the evaluation map (1) establishes that C,(n, k) is a linear code. The
minimum Hamming distance of C,(n, k) is d = n— k+ 1, which follows from the fact that
any nonzero polynomial of degree less than k evaluates to zero in less than k£ positions.

Given an arbitrary vector y € IFq”, the hard-decision decoding task consists of finding the
codeword ¢ € C,(n, k) such that the Hamming weight wt(e) of the error vector e =y — ¢
is minimized. The Berlekamp-Welch algorithm [28] is a well-known algorithm that ac-
complishes this task, provided wt(e) < d/2. Generalizing upon Berlekamp-Welch [28],
Sudan [25] and Guruswami-Sudan [11] derived a polynomial-time algorithm that achieves
error correction substantially beyond half the minimum distance of the code. In the
remainder of this section, we describe the essential elements of this algorithm.

Definition 1. Let A(X,Y) = 337,37 a;;X'Y’be a bivariate polynomial over F,
and let wx,wy be nonnegative real numbers. The (wx,wy )-weighted degree of A(X,Y),
denoted deg,,. ... A(X,Y), is the maximum over all numbers iwx -+ jwy such that a;; # 0.

The (1, 1)-weighted degree is simply the degree of a bivariate polynomial. The number of
monomials of (wx, wy)-weighted degree at most ¢ is denoted Ny 4y (6). Thus

Nuxay(®) € [{XY7 : 4,520 and dwx + jwy <3}

The following lemma provides a closed-form expression for Ny, ., (0) for the case wx = 1.
Similar statements can be found in [11, 18, 23, 25] and other papers.
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The lemma follows by a straightforward counting of monomials; for a proof, see [11,
Lemma6]. The exact expression in Lemma 1 can be converted into a simple lower bound:

(6+1)2 k=1 ([é+1 6+17  o+1Y)’ 52
Nijs(6) = ([ ey L 2
1-1(0) 20—1) T 2 k—1 k—1| k-1 2(k —1) @)
This is, in fact, a special case of the more general lower bound Ny, 4, (§) > 6%/2wxwy.
The latter bound can be easily proved using geometric arguments, as shown in Figure 2.

X
Figure 2. A bound on the number of monomials of (wx, wy )-weighted degree at most §

Here Ny, wy (6) is the area under the solid line, with each monomial X 2y represented by
the unit square whose lower left corner is at the point (a, b). It is easy to see that the triangle
of area 02 /2wxwy (bounded by the dashed line) is completely enclosed by the solid line.

Given the channel output vector y = ¢+ e = (y1, Yo, - - -, ¥5) and the corresponding point
set D = {21, 3,...,2,}, we consider the set of pairs P = {(z1, 12), (Z2,%2), - - -, (Zn, ¥n) }
as points in a two-dimensional affine space. Given a point (¢, #) and a bivariate polyno-
mial A(X,Y), we say that («, 3) lieson A(X,Y) if A(a, 3) = 0. Equivalently, we say that
A(X,Y) passes through the point («, 3). Herein, we will be interested in bivariate poly-
nomials that not only pass through all the points in P but do so with high multiplicities.

Definition 2. A bivariate polynomial A(X,Y’) is said to pass through a point («, 3) with
multiplicity m if the shifted polynomial A(X +«, Y + ) contains a monomial of degree m
and does not contain a monomial of degree less than m. Equivalently, the point («, ) is
said to be a zero of multiplicity m of the polynomial A(X,Y).

Using a well-known explicit relation (cf. [11]) between the coefficients of a bivariate poly-
nomial A(X,Y) and the coefficients of the shifted polynomial, we find that Definition 2
imposes the following linear constraints

% (1) ()t tay =0 VRIz0 sddat bri<m @)

i=k j=I

on the coefficients a; ; of A(X,Y’). Thus A(X,Y’) passes through a given point with multi-
plicity at least m if and only if its coefficients q; ; satisfy the 1,m(m+ 1) constraints spec-
ified by (3). We are now ready to formulate the first step of the Sudan [11, 25] algorithm.
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Interpolation step: Given the set P of points in F, x [, and a positive integer m,
compute the nontrivial bivariate polynomial Qp(X,Y) of minimal (1, k—1)-weigh-
ted degree that passes through all the points in P with multiplicity at least m.

If deg, ;, ; Qp(X,Y) = 0, then Qp(X,Y’) may have up to N ;_1(d) nonzero coefficients.
These coefficients should be chosen so as to satisfy the 1/,nm(m + 1) linear constraints
of type (3), imposed by the interpolation step. This produces a system of 1/, nm(m + 1)
linear equations (not all of them necessarily linearly independent) over F, in Ny ;_1(6)
unknowns. It is clear that this system has a solution as long as

Nijp1(6) > w (4)

For efficient algorithms to solve such a system of linear equations and, hence, accomplish
the interpolation step, we refer the reader to [8, 14, 18, 19, 23, 30].

The idea of Sudan’s algorithm [11, 25] is that, under certain constraints on the weight
of the error vector, we can read-off a list of decoding decisions as factors of Qp(X,Y") of
type Y — f(X). Thus the second (and last) step of the Sudan algorithm is as follows.

Factorization step: Given the bivariate polynomial Qp(X,Y), identify all the
factors of Qp(X,Y) of type Y — f(X) with deg f(X) < k. The output of the
algorithm is a list of the codewords that correspond to these factors.

Notice that full factorization of Qp(X,Y’) is not required to find all the factors of type
Y — f(X) with deg f(X) < k. Efficient algorithms to accomplish such “partial factoriza-
tion” are given in [1, 7, 8, 18, 30]. The eventual decoder output can be taken as the code-
word on the list produced at the factorization step that is closest to the received vector y.

The fundamental question is under which conditions can one guarantee that the correct
decoding decision is found on the list. The answer to this question is given in Theorem 2.

Theorem 2. Suppose that a vector y and a positive integer m are given. Then the fac-
torization step produces a list that contains all codewords of C,(n, k) at distance less than

) / 1
t = n—{—J > {n(l— RE>J (5)
m m
from y, where § is the smallest integer such that Ny y_1(6) > Yonm(m+1) and R = k/n.

For a proof of (5), see [11, 18]. The inequality in (5) follows from (2). Here, we observe that
Theorem 2 is a special case of Theorem 3, which we prove in the next section. Theorem 2
is the main result of Guruswami and Sudan in [11]. The theorem shows that as m — oo,
the algorithm of [11] corrects any fraction of 7 < 1 — /R erroneous positions.



3. Algebraic soft-decision decoding

In many situations [4, 27], the decoder can be supplied with probabilistic reliability infor-
mation concerning the received symbols. A decoding algorithm that utilizes such infor-
mation is generally referred to as a soft-decision decoding algorithm. We now specify this
notion precisely, in the context of the present paper. First, we define a memoryless channel,
or simply a channel, as a collection of a finite input alphabet £, an output alphabet %,
and | Z"| functions

FCl): ¥ —[0,1] forallz € 2 (6)

that are assumed to be known to the decoder. We think of channel input and output
as random variables X and )Y, respectively, and assume that X" is uniformly distributed
over Z. If the channel is continuous (e.g. Gaussian), then ) is continuous and the f(-|z)
are probability-density functions, while if the channel is discrete then Y is discrete and
the f(-|z) are probability-mass functions. In either case, the decoder can easily compute
the probability that o € 2~ was transmitted given that y € ¢ was observed, as follows

_ _fyPr(X=a) _ _ flylo)
2pes Fyle) Pr(X=z) > cq flylz)

where the second equality follows from the assumption that X" is uniform. For Reed-Solo-
mon codes, the input alphabet is always fixed to 2 = ;. Henceforth, let oy, as,..., o4
be a fixed ordering of the elements of If;; this ordering will be implicitly assumed in the
remainder of this paper. Given the vector y = (y1,¥2,...,yn) € Z™ observed at the
channel output, we compute a

(7)

Pr(Xza | y:y)

Tij def Pr(X:ai\y:yj) for i=1,2,...,q and j=1,2,...,n (8)

according to the expression in (7). Let IT be the ¢ x n matrix with entries m; ; defined
in (8). We will refer to II as the reliability matrix and assume that II is the input to
a soft-decision decoding algorithm. For notational convenience, we will sometimes write
II(a, j) to refer to the entry found in the j-th column of IT in the row indexed by « € F,.

We note that in some applications [4, 29], it is the reliability matrix II rather than the
vector y € %™ that is directly available at the channel output. In many other cases, the
channel output alphabet % is quite different from [F,. Thus the first step in hard-decision
decoding is the construction of the hard-decision vector u = (uy,us, ..., u,) € ]Fqn, where

U o argmaxacr, (e, j) for j=1,2,...,n 9)

This hard-decision vector is then taken as the channel output y = ¢+ e (cf. Section 2),
thereby converting the channel at hand into a hard-decision channel.

On the other hand, a soft-decision decoder works directly with the probabilities compiled
in the reliability matrix II. If the decoder is algebraic, it must convert these probabilities
into algebraic conditions. Before presenting a formal description of the proposed soft-
decision decoding procedure, we give an example that illustrates the main idea.
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Example 1. Let ¢ = 5, so that F, is the set of integers {0, 1,2, 3,4} with operations
modulo 5. We take D =, = Z; and consider the Reed-Solomon code C5(5,2) defined as

C5(5.2) & {(7(0).71), £(2),73), f(4)) : F(X)=a+bX withabeZs} (10)
Suppose that the codeword ¢ = (1,2, 3,4,0) corresponding to f(X) = 1 + X was trans-
mitted, resulting in the following reliability matrix

0.01 0.0025 0.05 0.14 0.20
0.06 0.0025 0.09 0.14 0.05
IT = | 0.02 0.9900 0.15 0.07 0.20 (11)
0.01 0.0012 0.61 0.44 0.40
0.90 0.0038 0.10 0.21 0.15

In this example, we assume, for convenience, that the rows and columns of II are indexed
by the elements 0,1, 2, 3,4 of Zs, in this order. The hard-decision vector derived from II
according to (9) is u = (4,2, 3,3, 3), which corresponds to errors in positions 0, 3 and 4.

It follows that even a maximum-likelihood hard-decision decoder will fail to reconstruct
the transmitted codeword ¢, since there exists another codeword (3,3,3,3,3) € C5(5,2)
that is closer to u in the Hamming metric. The list-decoding algorithm of Guruswami-
Sudan [11] will fail as well, since the number of erroneous positions exceeds the error-
correction capability of the algorithm (cf. Theorem 2). The GMD soft-decision decoding
algorithm [9, 10] will also fail to reconstruct ¢ = (1,2, 3,4, 0). Since the last three positions
inu = (4,2,3,3,3) are the least reliable, the GMD decoder will perform two decoding
trials, attempting to correct v’ = (4,2,3,3,¢) and v” = (4,2, ¢, ¢, ¢), where ¢ denotes
erasure. However, the decoder will produce (4,2,0,3,1) € Cs5(5,2) in both trials.

Nevertheless, we now show that the transmitted codeword can, in fact, be reconstructed
without resorting to full maximum-likelihood soft-decision decoding. The idea is to select
the interpolation points and their multiplicities so as to reflect the information in II in
as much as possible. A simple greedy procedure for this purpose is derived in the next
section. For the special case of our example, this procedure produces the following list

point (x,y)‘ (1,2) (0,4) (2,3) (3,3) (4,3)
multiplicity | 3 2 2 1 1

(12)

These points and multiplicities are shown to be optimal for the reliability matrix in (11),
in a precise sense described in Section4. The minimal (1, 1)-weighted degree polynomial
that passes through all the points in (12) with the required multiplicities turns out to be

QX,Y) = 1+X+Y - X2- V2 2X%Y + V2X — V¥ + X4 2v X3 X2V? 4 2Y3X
= Y -X-1)Y -3X-4)(1+Y +3X +3X*+3XY)

We identify the two solutions fi(X) = 1+ X and fo(X) = 4 + 3X as corresponding

to (1,2,3,4,0) and (4,2,0,3,1), respectively. Referring to the reliability matrix in (11),

we see that II(1,0)T1(2,1)11(3,2)I1(4,3) I1(0,4) > TI(4,0)I1(2,1)I1(0,2) I1(3,3) II(1, 4).

Thus the transmitted codeword ¢ = (1,2, 3, 4, 0) is more likely than (4,2, 0, 3,1) given the

observations; it will therefore be selected as the decoder output. 0
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Example 1 shows how a soft-decision decoding algorithm for Reed-Solomon codes might
work: the “soft” reliability information enters the decoding process through the choice of
interpolation points and their multiplicities.

A convenient way to keep track of the interpolation points and their multiplicities is by
means of a multiplicity matrix. A multiplicity matrix is a ¢ X n matrix M with nonnegative
integer entries m; ;. The first step of our soft-decision decoding algorithm consists of
computing the multiplicity matrix M from the reliability matrix II. This step is discussed
in detail in the next section. In the remainder of this section, we characterize the proposed
decoding algorithm for a given choice of interpolation points and their multiplicities. Thus
the second step is the “soft” interpolation step, which may be expressed as follows.

Soft interpolation step: Given the point set D = {x1,Zs, ..., %, } and the multi-
plicity matrix M = [m, j|, compute the (nontrivial) bivariate polynomial Q (X,Y)
of minimal (1, k—1)-weighted degree that has a zero of multiplicity at least m; ; at
the point (x;, «;) for every i,j such that m; ; # 0.

The third and final step of our algorithm is the factorization step, which is identical to
the factorization step of the Sudan algorithm, described in the previous section. (As in
Example 1, the soft-decision list-decoder may also include a post-processor that selects
the most likely codeword from the list produced at the factorization step.)

Definition 3. Given a ¢ X n matrix M with nonnegative integer entries m;;, we define
the cost of M as follows

q n
C(M) déf %ZZmi,j(mi,j-l—l)

i=1 j=1

It is easy to see that the computation of the polynomial Q,,(X,Y’) is equivalent to solving
a system of linear equations of type (3). Since a given zero of multiplicity m imposes
1,m(m+ 1) linear constraints on the coefficients of Q;/(X,Y), the cost C(M) is precisely
the total number of linear equations. As in (4), we can always find a solution Q/(X,Y)
to the soft interpolation task if the (1, k—1)-weighted degree § is large enough, namely if

Nig1(6) > C(M) (13)

so that the number of degrees of freedom is greater than the number of linear constraints.
Thus we define the function

Awywy (V) df  min {0€Z : Nyyw,(6)>v} (14)

Notice that Ay _1(v) < 1/2(k—1)v < v2kv in view of (2). Next, given two ¢ X n matrices
A and B over the same field, we define the inner product

q n
<A, B) déf trace(ABT) = ZZam-bi,j

i=1 j=1

Finally, it will be convenient to think of the codewords of the Reed-Solomon code C,(n, k)
as ¢ X n matrices over the reals. Specifically, any vector v = (v, vo,...,v,) over F, can

8



be represented by the g x n real-valued matrix [v] defined as follows: [v];; =1 if v; = o,
and [v];; = 0 otherwise. With this notation, we have the following definition.

Definition 4. The score of a vector v = (v1,vs,-..,v,) over F, with respect to a given
multiplicity matrix M is defined as the inner product Sy;(v) = (M, [v]).

The following theorem characterizes the set of codewords produced by our soft-decision
list-decoding algorithm for a given multiplicity matrix. Notice that Theorem 2 follows as
a special case of Theorem 3 for the multiplicity matrix M = m [¥].

Theorem 3. Let C = C(M) be the cost of a given multiplicity matrix M. Then the poly-
nomial Q(X,Y) has a factor Y — f(X), where f(X) evaluates to a codeword ¢ € C,(n, k),
if the score of ¢ is large enough compared to C, namely if

Su(c) > Arp_1(C) (15)

Proof. Let ¢ = (¢, ¢a, - . ., cy) be a codeword of C,(n, k), and let f(X) be the polynomial
that evaluates to c¢. That is f(z;) = ¢; for all z; € D, where D is the set of points that de-
fine C,(n, k) asin (1). Given Qp/(X,Y"), we define the polynomial g(X) € F,[X] as follows

def
9(X) = Qu(X, f(X))
It would clearly suffice to prove that (15) implies that g(X) is the all-zero polynomial, since
then Qp/(X,Y) must be divisible by Y — f(X). To prove that g(X) = 0, we will show
that deg g(X) < A1 4_1(C) and yet g(X) has a factor of degree Sy/(c). We write

Sulc) = (M,[c]) = mi+ma+---+my,

Thus the polynomial O,/ (X,Y) passes through the point (x;,¢;) with multiplicity at
least m;, for 7 =1,2,...,n. We will make use of the following lemma.

Lemma 4. Suppose that a bivariate polynomial Q(X,Y’) passes through a point («, 3)
in K, x I, with multiplicity at least m, and let p(X) be any polynomial in F,[X| such that
p(a) = . Then the polynomial Q(X,p(X)) is divisible by (X — a)™.

This lemma is identical to Lemma4 of [11], and we omit the proof. Since f(z;) = ¢; for
j=1,2,...,n, it follows from Lemma4 and the fact that =, x,,...,x, are all distinct
that the polynomial g(X) = Qu/ (X, f(X)) is divisible by the product

(X — )™ (X — 25)™ - (X — z,)™

whose degree is Sy(c). We conclude that either deg g(X) > Sp(c) or g(X) = 0. Since
deg f(X) < k£ — 1, it is easy to see that the degree of g(X) = Qu (X, f(X)) cannot ex-
ceed the (1,k—1)-weighted degree of Q(X,Y). Yet it follows from (13) and (14) that
deg, ;1 Qu(X,Y) < A1x-1(C). Thus if g(X) # 0 then Sp(c) < degg(X) < A1x-1(C).
Hence (15) implies that ¢(X) =0. 1

Corollary 5. Let C = C(M) be the cost of a given multiplicity matrix. Then Q(X,Y)
has a factor Y — f(X), where f(X) evaluates to ¢ € C,(n, k), if Spr(c) > v/2(k—1)C.

Proof. Follows from Theorem 3 and the fact that A ,_1(C) < \/2(k—1)C by Lemma1l. g
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4. From posterior probabilities to interpolation points

This section deals with the conversion of posterior probabilities derived from the channel
output into a choice of interpolation points and their multiplicities. More specifically,
given a reliability matrix II, as defined in (8), we would like to compute the multiplicity
matrix M that serves as the input to the soft interpolation step of our algorithm.

Let 4, denote the set of all ¢ x n matrices with nonnegative integer entries m; ;, and
let .# (C) be the finite set of all matrices in .4, whose cost is equal to C. Thus

q

c Iy
%(C) o {ME%q,n : §ZZm,~,j(mm+1):C}

i=1 j=1

In view of Theorem 3, we would like to choose M € .#(C) so as to maximize the score
of the transmitted codeword ¢ € C,(n, k). However, the transmitted codeword itself is
obviously unknown to the decoder; only some stochastic information about c is available
through the observation of the channel output (yi,ys,...,%,) € #™ and the knowledge
of the channel transition probabilities Pr(X =« |Y =y). In fact, as far as the decoder
is concerned, the transmitted codeword may be thought of as a random vector, which
we denote by X = (X, Ay, ..., A,). For a given multiplicity matrix M, the score of the
transmitted codeword is a function of X given by Sy (X) = (M, [X]).

Thus Sy (X) is a random variable, and the question is: what is the best choice of a multi-
plicity matrix M € .#(C) in this probabilistic setting? We choose to compute the matrix
M € #(C) that maximizes the expected value of Sy/(X). This choice is based on the
following considerations. First, this is a reasonable optimization criterion for the prob-
abilistic setup which is the focus of this paper. The obvious alternative is to compute
M € #(C) that maximizes the probability that Sy, (X) > A(C). However, this computa-
tion appears to be extremely difficult, except for certain special cases of simple channels.

The second reason is this: Theorem 14 of Section 5.2 shows that this criterion is asymptot-
ically optimal in the following sense. Let P, denote the probability of list-decoding failure,
defined as the probability that the transmitted codeword c is not on the list produced by
the soft-decoder. Theorem 14 implies that for every ¢ > 0, however small, we have

E{Su(X)} 1
\/R < \/% - \/&% = Pe < € (16)

where R = k/n is the rate of the Reed-Solomon code and E{S;/(X)} is the expected
value of the score for a given multiplicity matrix M € .#(C). On the other hand, under
certain assumptions stated in Section 5.2, for every 0 < € < 1 we have

1 E{Sun(X)} 1
P,<e = R—y, < NG +m (17)

It is easy to see that for n — oo, the two bounds on R coincide. Thus, at least asymp-
totically, maximizing the expectation of the score allows for reliable transmission at the
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highest possible rate. Of course, one might argue that such asymptotic reasoning has
little meaning for Reed-Solomon codes, since n < q. However, the proposed soft-decoding
algorithm can be generalized to algebraic-geometric codes, so that n — oo makes sense
for a fixed g. More importantly, the bounds in (17) and (16) essentially follow from the
fact that the random variable Sy, (X) concentrates about its expected value as n becomes
large. We have observed that in practice (in simulations), the length n does not have to
be too large for this concentration to take place. In fact, for signal-to-noise ratios (SNRs)
of practical interest, n = 256 is usually enough.

To proceed, let us define the expected score with respect to a probability distribution P(-)
on the random vector X = (X, X,, ..., X,) as follows

Er{Su(X®)} € Y Su@P@) = Y. Y M(z;,5)P)

zeX " zERD j=1

where M (x;, j) denotes the entry found in the j-th column of M in the row indexed by z;.
It remains to specify P(-). For this purpose, we adopt the product distribution determined
by the channel output (y1,9s,...,yn) € ™, namely

def “ - .
P(ai,ag,..zn) E TP =21 %=y;) = [[Mx;.5) (18)
7j=1 7j=1

where II is the reliability matrix defined in (8). It is easy to see that this would be the
a posteriori distribution of X given the channel observations, if the a prior: distribution
of X were uniform over the space ]Fqn. However, the decoder knows that X was drawn
a priori from the code C,(n,k) rather than from the entire space F,', and hence the
probability model in (18) is suboptimal. Taking this into account results in the probability
model given in (50). This model is optimal in that it reflects precisely all the information
available to the decoder. Unfortunately, this model leads to an intractable optimization
problem, as shown in Appendix A (cf. Theorem 18). Thus the remainder of this section is

concerned with the computation of the matrix M (II,C) defined as follows

M(,C) ¥ argmaxye o) Ep{Su(X)} (19)

where the expectation is taken with respect to the probability distribution P(-) in (18).
We start with the following lemma, which gives a useful expression for the expected score.

Lemma 6. The expected score with respect to the probability distribution in (18) is equal
to the inner product of the multiplicity matrix and the reliability matrix, namely

EP{SM(X)} = (M, H)

Proof. Loosely speaking, the lemma follows from the fact that if X is distributed
according to (18), then the reliability matrix II is precisely the expected value of [X]. To
see this, consider the random vector X' = (X}, Xs, ..., X,_1) obtained by deleting the last

11



component of X = (X1, Xy, ..., X,). The probability distribution of X’ can be computed
by marginalizing (18) with respect to X,,. Explicitly, if 2’ = (1, z2,...,2, 1) € ]F;In_1 then

Pr(x’=§’> = Y Pl@y, 2. Tp1,7) = Y ﬁﬂ(%‘aj) = ﬁﬂ(xj,j)

Tn €y zn€ly j=1

where the last equality follows from the fact that > II(z,,n) = 1. This, in particular,

implies that

1=y Pr< =§) Y HH wj,5) = Zﬁﬂ(xl,l) (20)

' gt o efp~t j=1 zERP I=1
L = ac]—a 1#j

Tn €If

for any j € {1,2,...,n} and any o € F,. The last equality in (20) follows by applying
a similar argument to the random vector obtained by deleting the j-th component of X'.
Now consider the ¢ x n matrix & = [p; ;| which may be thought of as the expected value
of [X] with respect to the distribution P(-) in (18). Specifically, we define & as follows

P = Y 2P (21)

zeF?

Since [z]; ; = 1 if z; = oy, and [z]; ; = 0 otherwise, the entry found in row ¢ and column j
of the matrix & is given by

pij = > P) = Y [[01) = T, 5) > []M,0) (22)

z€FP z€FP =1 zeFP I=1
zj=0a4 zj=a; mj—a1 1#35

The summation on the right-hand side of (22) evaluates to 1 by (20), which implies that
pij = (e, j) =mj foralli e {1,2,...,q} and all j € {1,2,...,n}. Therefore & =1II.
The lemma can be now easily proved by interchanging expectation with inner product
Ep{Sn(X)} = Ep{(M,[X])} = (M,Ep{[X]}) = (M, II). More explicitly, we have

Er{Su(®)) = SO0 ) P@) — SO, P <Mz > o,

ey €l z€Rn

where the first two equalities follow from the linearity of the inner product, while the last
equality follows from the definition of &2 =11 in (21). g

We will construct M (I1, C) iteratively, starting with the all-zero matrix and increasing one
of the entries in the matrix at each iteration. Referring to Lemma 6, we see that increasing
m; ; from 0 to 1 increases the expected score by 7; ; while increasing the cost by 1. If we
require that Qu(X,Y) passes through the same point again — that is, increase m;
from 1 to 2 — then the expected score again grows by 7; ;, but now we have to “pay” two
additional linear constraints. In general, increasing m; ; from a to a 4+ 1 always increases
the expected score by m; ; while introducing a + 1 additional constraints of type (3).
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Example 2. Returning to Example 1 of the previous section, consider the code Cs(5,2)
given by (10) and the reliability matrix IT in (11). Suppose we restrict the cost of the
multiplicity matrix to 14, that is, we wish to find

M(11,14) = argmaxare_(14) (M, 1I)

We construct a multiplicity matrix M by a greedy iterative process, starting with the 5x5
all-zero matrix, and requiring at each iteration that the newly chosen interpolation point
maximizes the increase in the expected score normalized by the number of additional
linear constraints (the increase in cost).

Table 1 shows the sequence of chosen interpolation points. Observe that the column that
contains the ratio of the increase in the expected score to the increase in cost is strictly de-
creasing. The resulting multiplicity matrix M is described in equation (12) of Example 1.
It can be verified by exhaustive search that maxyse_#4) (M, II) = 6.83,s0 M = M(IL, 14).

Notice that N;;(3) = 10 while N;(4) = 15 by Lemmal, so that A;(14) = 4. Thus
the expected score exceeds the minimum score required for successful decoding (cf. The-
orem 3) by a factor of about 1.7. This gives a high level of confidence that the actual
score of the transmitted codeword will also exceed A;y_1(14) = 4. Indeed, the score of

c=(1,2,3,4,0) € C5(5,2) with respect to M is Sys(c) = 5. 0

The greedy iterative procedure used in Example 2 turned out to be optimal for that case.
We formalize this procedure as Algorithm A below.

Algorithm A

Input: Reliability matrix Il and a positive integer s, indicating
the total number of interpolation points.

Output: Multiplicity matrix M.

Initialization step: Set II* := Il and M := all-zero matrix.
Iteration step: Find the position (7, j) of the largest entry 77, in IT*,

and set Ti j
* 3.
ﬂ-i’j -« 72
mg 4 +
mij = mi;+1
s = s—1

Control step: If s =0, return M; otherwise go to the iteration step.

Let M(II, s) denote the multiplicity matrix produced by Algorithm A for a given reliability
matrix IT and a given number of interpolation points s (counted with multiplicities). The
following theorem shows that this matrix is optimal.
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itera- | interpolation | increase | increase | dscore total | expected

tion | point (4,5) | inscore | incost | dcost | cost score
1 (1,2) 0.99 1 0.990 1 0.99
2 (0,4) 0.90 1 0.900 2 1.89
3 (2,3) 0.61 1 0.610 3 2.50
4 (1,2) 0.99 2 0.495 5 3.49
5 (0,4) 0.90 2 0.450 7 4.39
6 (3,3) 0.44 1 0.440 8 4.83
7 (4,3) 0.40 1 0.400 9 5.23
8 (1,2) 0.99 3 0.330 12 6.22
9 (2,3) 0.61 2 0.305 14 6.83

Table 1. Iterative construction of a multiplicity matrix

Theorem 7. The matrix M(II, s) maximizes the expected score among all matrices in
My, with the same cost. That is, if C is the cost of M(II, s), then

M(II,s) = argmaxarc.z(c) (M,II)

Proof. With each position (7, ) in the reliability matrix II, we associate an infinite se-
quence of rectangles B; 1, B; 2, ... indexed by the positive integers. Let B denote the
set of all such rectangles. For each rectangle B;,; € B, we define length(B;;;) = I,
height (B, ;) = mi;/l, and area(B; ;) = length(B; ;) - helght(lS’Z ji) = mi ;. For a mul-
tiplicity matrix M € .#,,, we define the corresponding set of rectangles .7 (M) as

def

Observe that the number of rectangles in (M) is 1, 37 m; ;, which is precisely the
total number of interpolation points imposed by the multiplicity matrix M (counted with
multiplicities). Furthermore

q,m Mi,j q,n Mij

C(M) = %w = ZZZ = ZZlength i) Zlength
;zll 2 i= 1 =1 i= 1 =1 Bes (M
q,n q,n i j q,n Mij

<M, H) = Zmi,j * T, = ZZ?TZ',]' = ZZarea(Biyj,l) = Z area(B)
i= i=1 [=1 i=1 =1 BeS (M)

j=1 j=1 j=1

Thus the cost of M is the total length of all the rectangles in .#(M) and the expected
score (M, II) is the total area of all the rectangles in .(M). It is intuitively clear that to
maximize the total area for a given total length, one has to choose the highest rectangles.
This is precisely what Algorithm A does: the algorithm constructs the matrix M(IL, s)
that corresponds to the set of s highest rectangles in 8. It is now obvious that if the s
highest rectangles in 28 have total length C, then no collection of rectangles of total length
at most C can have a larger total area.
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Although Algorithm A produces an optimal multiplicity matrix M(I1, s) for an arbitrary
number of interpolation points s, it cannot be used to solve the optimization problem (19)
for an arbitrary value of the cost C. The algorithm computes a solution to (19) only
for those costs that are expressible as the total length of the s highest rectangles in ‘B
for some s. In other words, if M(II,1), M(IL,2), M(IL, 3),... is the infinite sequence of
matrices defined by (19) for C =1,2,3,..., then M(IL, 1), M(IL, 2), M(IL, 3), ... is a sub-
sequence of this sequence. This subsequence will generally suffice for our purposes.

Remark. Algorithm A can be also used to generate a sequence of multiplicity matrices
indexed by a bound on the size of the list produced by the soft-decision decoder. Clearly,
the number of factors of Q (X,Y’) of type Y — f(X) is bounded by deg, , Qa (X, Y’), and

deg, 1 Qu(X,Y) J < {Al,kl(C)J

k—1 k—1 (24)

Thus, given a bound on the desired list-size, all one has to do is to keep track of the total
cost C, and stop Algorithm A just before the right-hand side of (24) exceeds this bound.

deg0,1QM(XaY) < {

5. Asymptotic performance analysis

In the next subsection, we investigate the multiplicity matrix M(II, s) produced by Algo-
rithm A as s — co. We shall see that for s — oo this matrix becomes proportional to II.
Based on this result, we derive an asymptotic condition for successful list-decoding, and
provide a geometric characterization of the asymptotic decoding regions of our algorithm.
In a subsequent subsection, we focus instead on long codes — that is, we study the limiting
performance of our algorithm as the code length n approaches infinity.

5.1. Asymptotic analysis for large costs

We start with two simple lemmas. In all of the subsequent analysis, we keep the reliabil-
ity matrix Il = [r; ;| fixed, while s ranges over the positive integers. For convenience, we
define ® = {1,2,...,¢} x{1,2,...,n}. Let x(IT) denote the set of all (i,j) € ® such that
m;; 7 0. Let m; j(s) denote the entries in the matrix M(II, s) produced by Algorithm A.

Lemma 8. As s — oo, every nonzero entry in M(II, s) grows without bound. In other
words m;_j(s) — oo when s — oo for all (i, j) € x(IL).

Proof. Define mmax(s) = max; jjco mi;(s) and mmin(s) = ming jyey) mi;(s). Clearly,
it would suffice to show that mmin(s) — oo for s — oco. Notice that

q n
s = Z Z m;;(s) < qnmMmpax(s) (25)
i=1 j=1
It follows from (25) that Mmmax(s) — 00 as s — co. Hence there exists an infinite integer
sequence Si, Sg, S3, - . . defined by the property that muyax(s,) = 7 and mpax(s,+1) = r+1.
The iterative nature of Algorithm A implies that for all s > 1, there is exactly one position
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(40, jo) such that myg (s + 1) = my, ;,(s) + 1. We say that (i, jo) is the position updated
at iteration s + 1 of Algorithm A. This position is distinguished by the property that

o Z 7 for all (,7) € ® 26
Migjo(5) +1 = my;(s) +1 (i,7) (26)

Forr =1,2,..., let (i, jr) denote the position updated at iteration s, + 1 of Algorithm A.
Then it follows from (26) and the definition of s, that

7r. . 7T . 7"' . . i

mij(s,) +1 > i(mmu(s,) + 1) > R 4 for all (4, j) € x(II)
Wir,jr Tmax Tmax

where Ty = Max(; jjeem;,;j and Tmin = MiNg j)e,mTi,j- Denoting by p the ratio mmin/Tmax,

we conclude from the above that my,(s,) = pr + p — 1. Since p is a positive constant

while r — 00 as s — 00, it follows that muyp,(s) grows without bound for s — co. 1t

Henceforth, let (is,j5) denote the position updated at iteration s of Algorithm A, and
consider the sequence of ratios of the increase in the expected score to the increase in cost
at successive iterations of Algorithm A (cf. the fourth column of Table 1), namely

9 def i1 def iy, ja 0 def Tis,js
1 - - N 7 2 - AN 7 3 - o 7
My 5, (1) Miy 3o (2) Mg 53(3)
It follows from (26) that the sequence 6y, 6,, ... is non-increasing. (Indeed, this was our

goal in the design of Algorithm A.) Clearly 6; = T,y while limg_,, 05 = 0 by Lemma 8.

Lemma 9. For every positive integer s, there exists a positive constant K = K (s) < Tmax,
such that
K(mi,j(s) + 1) > T34 > Kmi,j(s) for all (7,,_]) cd (27)

Conversely, for every positive constant K < Tyay, there exists a positive integer s = s(K)
such that (27) holds.

Proof. Given s, we choose K = K (s) so that 5,1 < K < 65, which is always possible as

the sequence 61,0, . .. is non-increasing. To prove the first inequality in (27), observe that
’/Tis 1’js+1 7ris+1,js+1 71—17.7 .

K > 0, = + = > for all (¢,7) € ®
- mis+1,js+1(3 +1) mis+1,js+1(3) +1 7 mi,j(s) +1 .9)

where the last inequality follows from (26). The second inequality in (27) holds vacuously
if m; ;(s) = 0, so assume that m; j(s) > 1. This assumption implies that position (7, j) was
updated at least once, and we let s* < s denote the number of the most recent iteration
of Algorithm A at which position (4, j) was updated. Then

Ti,j Ty

K < 03 < 03* = ==
m ;(s*) m;(s)

where the last equality follows from the fact that position (7,j) was not updated since
iteration s* Finally, given 0 < K < Tmax, we choose s = s(K) so that 8,1 < K < 6, once
again. This choice is possible because the sequence 6, 6, ... is non-increasing, 61 = Tmax
and lim,_,,, 0, = 0. The proof then remains exactly the same, except that the first in-
equality in (27) can be now strengthened to a strict inequality. g
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Since (27) holds for all (7, j) € @, both inequalities in (27) remain valid under summation
over all (i,j) € ®. Thus it follows from Lemma 9 that

Y o K(mig(s)+1) = D my = Y Kmij(s) (28)

(i,j)€® (i,j)€® (1,j)e®

These inequalities lead to upper and lower bounds on the constant K = K (s) in Lemma 9.
Since Y (; heg Mij(s) = s while 32, .5 i ; = n, we conclude from (28) that
n

> K >
- (s) - s+qn

(29)

» |3

Next, we define the normalized multiplicity matrix M'(II, s) = [u; ;(s)] and the normalized
reliability matrix 11" = [r; ;] as follows: p; ;(s) = m;;(s)/s and 7 ; = m; ;/n for all (7, j) € .
It is clear from these definitions that (M’ 1) = (II',1) = 1, where 1 denotes the all-one
matrix. The following theorem is the key result of this subsection: the theorem shows
that the optimal multiplicity matrix M (II, s) becomes proportional to IT as s — 0.

Theorem 10. As s — oo, the normalized multiplicity matrix converges to the normalized
reliability matrix: M'(I1, s) —s o II'. In other words, for every € > 0, there exists an sg
such that for all s > sq we have

Tij  Mig(s)

< for all (i, j) € ®
" . € or all (i,7) € (30)

‘ﬂ-é,j - :“i,j(s)‘ =

Proof. 1t follows from Lemma9 that for all s, there exists a constant K(s) such that
1>m,;/K(s)—m;;(s) >0 for all (4,5) € ®. Dividing this inequality by s, we obtain

1 T
= > = —pi(s) 2 0 31
S S (S) M;J(s) ( )

From the bounds on K (s) in (29), we conclude that 7; ; < m;;/sK(s) < m; + qm;j/s.
Combining this with (31), we get

4T max
S

> o Hig(s) 2 (32)

®w | =

It follows that for all s > max{1/e, Tpnaxq/e} = Tmaxq/€, the bound in (30) holds for all
(1,7) € ®. Thus sp = [Tmaxq/€]- 1

Asymptotically, for a large number s of interpolation points — and, hence, for a large
cost — a constraint on the cost C(M) = 14, ({(M, M)+ (M, 1)) is equivalent to a constraint
on the Ly-norm +/(M, M) of the multiplicity matrix. It is obvious that for a fixed norm

(M, M), maximizing the expected score (M, II) is equivalent to maximizing the corre-
lation between M and II, which is clearly achieved by letting M be proportional to II.
This intuition confirms the result established in Theorem 10.
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Remark. Finding the optimal multiplicity matrix M(II, s) can be viewed as a gambling
problem. Assume that a gambler has a certain wealth in the form of a maximal number of
linear constraints the gambler can satisfy. The matrix II provides all the information the
gambler can use in order to place bets on interpolation points with the goal of maximizing
the return, which is the score of the transmitted codeword. In this context, Theorem 10
shows that proportional betting is the asymptotically optimal gambling strategy. Propor-
tional betting is known [5] to be the optimal strategy in the context of a fair horse race.
However, these results do not appear to be related to Theorem 10 in an obvious way.

We conclude this section with a geometric characterization of the (asymptotic) decoding
regions of our soft-decision decoding algorithm. To start with, the following simple lemma
essentially recasts Theorem 3 in slightly different terms.

Lemma 11. For a given multiplicity matrix M, the algebraic soft-decision decoding al-
gorithm outputs a list that contains a codeword ¢ € Cy(n, k) if

(M, [c]) —
Jorn+ary - V! (33)

Proof. The lemma follows from Corollary 5 by observing that Sy(c) = (M, [c]) and
2C(M) = (M, M) + (M, 1) by definition. g

Theorem 10 and Lemma 11 lead to a precise characterization of the performance limits of
our algorithm as the number of interpolation points approaches infinity. In the following
theorem and its corollaries, o(1) denotes a function of s that tends to zero as s — oo.

Theorem 12. The algebraic soft-decision decoding algorithm outputs a list that contains
a codeword ¢ € C,(n, k) if

<H’ [CD > k—1 + 0(1) (34)

AL TI)

Proof. Substituting the optimal multiplicity matrix M(II, s) in (33) and normalizing
(dividing by s the numerator and the denominator), we obtain the equivalent condition

(M'(TL, 5), [c])
VML 5), MI(IL, 5)) + 2

> VEk—1 (35)

It follows from Theorem 10 that for s — oo, one can replace M'(IL, s) in (35) by II', which
upon re-normalization yields (34). More explicitly, we have

2

(M'(T1, ), [d]) S (IL [d) — % _ (L) o(1)
\/ (M!(TL, 5), M'(IT, 5)) + % \/ (I1, IT) 4 @ommactln? | @it (I1, )

where the first inequality follows from (32) after some straightforward manipulations. In
conjunction with (35), this completes the proof. g
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Finally, Theorem 12 has a particularly nice interpretation if the reliability matrix II and
the codeword [c| are viewed as vectors in the gn-dimensional Euclidean space R?".

Corollary 13. Let f = ((I1, ¢) denote the angle in R between II and [c¢]. Then the al-
gebraic soft-decision decoding algorithm outputs a list that contains c if

cosf > VR + o(1)

Proof. Follows from Theorem 12 and the identity (II, [c]) = y/n (I, II) cos 3. 1

Thus the asymptotic decoding regions of our algorithm are spherical cones in the Eu-
clidean space R?", extending from the origin to the surface of a sphere & of radius /n.
The codeword [¢] is a point of &, and the line connecting the origin to this point constitutes
the central axis of the spherical cone. The angle of each spherical cone is cos™* v/R. Notice
that since the algorithm is a list-decoding algorithm, its decoding regions are not disjoint:
the spherical cones of angle cos™' v/R are overlapping. Also notice that we are concerned
only with the positive 27-part of the Euclidean space R?" (which consists of points with
all coordinates nonengative), since all the entries of both II and [c] are nonnegative.

It follows from Theorem 2 that the asymptotic (for m — oo) decoding regions of the
Guruswami-Sudan [11] algorithm are spherical caps on the surface of & of the same
spherical angle cos™! V/R, but the decoding process involves projecting IT onto a point (Y]
on the surface of G in a nonlinear fashion, according to equation (9). Finally, the decoding
regions of conventional Berlekamp-Welch [28] hard-decision decoding are also spherical
caps on the surface of © and the same nonlinear projection is employed, but the spherical
angle of these caps is only cos™!(1/, + 14,R), and they are non-overlapping.

5.2. Asymptotic analysis for long codes

As noted in Section 4, from the point of view of the receiver, the transmitted codeword is

a random vector X = (X}, Xs, ..., X,,) whose a posteriori probability distribution is given
by (18). For notational convenience, let us introduce two random variables:
def <M ) [X ])

zZ ¥ mx)y and 2 ¥

V/n (M, M) +n(M,1)

The key result of this subsection is the following theorem which shows that as n — oo,
the random variable Z* converges to its expected value.

Theorem 14. Suppose that a ¢ X n reliability matrix Il is given, and let M be an arbi-
trary q X n multiplicity matrix. Then for any € > 0, we have
1

Pr{|z' ~E{2}| 2} < —

(36)

Proof. Consider the random variable Z = (M, [X]) = M(X;,1) +---+ M(X,,n) and
define Z; = M(X},j) for j =1,2,...,n. Thus Z; is the entry found in the j-th column
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of M in the row indexed by &;. The distribution of X;, computed by marginalizing the
distribution of X in (18), is given by

Pr()\f'j:ai) = for 1 =1,2,...,¢ and 7=1,2,...,n
Using this distribution, we find that E{Z;} = Y7 ms;m;; and E{Z7} = Y7, m? mi ;.
The key observation is this: since the random variables &}, A5, ..., &,, are independent,
so are Zy, Zy, ..., 2,. Hence
n n q q 2 n g
Var(2) = ZVar(Zj) = Z Zmijm,j — (Zmi’jﬂ-i’j> < Z mfyj = (M, M)
j=1 j=1 \ i=1 i=1 j=1i=1

The theorem now follows by a straightforward application of the Chebycheff inequality [20,
p. 193] to the random variable Z*. Thus

Var(Z2*) Var(Z2) 1
>e} < e &2 (n (M, M) +n (M, 1)) )

Pr{ |2° —E{2"}

Remark. The proof of Theorem 14 is essentially similar to a well-known proof of the weak
law of large numbers. We note that using the strong law of large numbers, it is possible to
show that as n — oo, the random variable Z* equals its expectation with probability 1.

We can use Theorem 14 to derive a relationship between the probability P, of list-decoding
failure, the expected score, and the rate R of the Reed-Solomon code. Indeed, we have

P < Pr{z<aa0) < r{z<vare) = p{zr<VR} (1)

where the first inequality follows from Theorem 3, and the second from the fact that
Ay x-1(C) < V2kC. In view of Theorem 14, this immediately implies (16). Namely,

VR < E{Z*}—\/% = P <e¢
We can also derive a bound in the opposite direction, but to do so we need two assump-
tions. First, we assume that the first inequality in (37) holds with equality. This is tanta-
mount to assuming that condition (15) of Theorem 3 is not only sufficient but also neces-
sary for successful list decoding. Strictly speaking, this is not true. It is easy to construct
examples where Q,/(X,Y") has a factor Y — f(X), with f(X) evaluating to a codeword
c € Cy(n, k), and yet (M, [c]) < Ay ,1(C). In fact, such situations do arise in simulations.
However, they occur so infrequently that this phenomenon has no effect on the overall
performance. To be specific, the approximation P, ~ Pr{Z < A ;_1(C)} is usually ac-
curate up to the second significant digit. The second assumption is that A; ,_1(C) is well
approximated by 1/2(k—1)C. This is certainly true for large costs, as can be seen from
Figure 2. Combining the two assumptions with Theorem 14 produces the bound in (17).
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6. Performance analysis for a fixed list size

In this section, we study the performance achieved by our soft-decoding algorithm under
a constraint which guarantees that the number of codewords on the list produced by the
decoder does not exceed a given bound L. The key analytical result in this section is
Theorem 17. This theorem extends Theorem 12 by providing a bound on how quickly the
decoding algorithm converges to the asymptotic performance as a function of L. The
analytical results are confirmed by simulations for both high-rate and low-rate codes.

We start with two lemmas. As observed in Section 4, the number of codewords on the
list produced by the soft-decision decoder is upper-bounded by deg Qn(X,Y), where
Qun(X,Y) is the interpolation polynomial. This leads to the following lemma.

Lemma 15. The number of codewords on the list produced by the soft-decision decoder

for a given multiplicity matrix M does not exceed

gt /(M, M)+ (M, 1)
k—1

Li(M) (38)

Proof. The size of the list is at most deg, ; @ (X,Y). By the definition of weighted-deg-
ree, we have degy ; Qu(X,Y) < deg; ,_; Qu(X,Y)/(k —1). Now

deg; ;_; Qu(X,Y) < Ay 1(C) < VM, M)+ (M,1)
k-1 R k-1

where the first inequality follows from (13) and (14), while the second inequality follows
from the definition of the cost C = C(M), Lemmal, and (14). g

Let IT be a given reliability matrix, and let M(IL, s) be the corresponding multiplicity ma-
trix produced by Algorithm A. For convenience, we define M(II, 0) as the all-zero ¢ xn ma-
trix. Let J denote a ¢ X n matrix all of whose entries are nonnegative real numbers not ex-
ceeding 1. We write J* instead of J if all the entries in the matrix are strictly less than 1.

Lemma 16. For every positive real number )\, there exists a nonnegative integer s, such
that the matrix M(II, s) can be written as

def

M(Ls) = [MI] € A - g (39)

Conversely, for every nonnegative integer s, there exists a positive real A such that (39)
holds, possibly with J* replaced by J.

Proof. As before, let Ty, be the largest entry in II. If A < 7l | then M(II,0) satis-

max’

fies (39). Otherwise, set K = A7!, so that 0 < K < mpax. We know from Lemma9 and
its proof that there exists a positive integer s, such that

T < miy(s) < T2 for all (i, j) € @ (40)

It follows from (40) that M(II, s) is of the form (39). Conversely, given M(II, s), we take
A= K™, where K = K(s) < Tmax is the constant derived in Lemma9. g
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Given M = M(II, s), let X be a positive real constant such that M = AII— 7. Such a con-
stant exists by Lemma 16. Then

(M, M)+ (M,1) = X (IL,II) — A\{IL,27-1) + (J, J—1) (41)

We can use (41) and (38) to derive an expression for A in terms of II, J, and Li(M).
Equating the right-hand side of (41) to (k—1)L£2(M), we obtain a quadratic equation in \.
Since (II,IT) > 0 and (J, J—1) < 0, this equation has one positive root and one negative
root. Solving for the unique positive root yields

P

(11,27 -1) \/<H,2J—1>2 (J.1-7)  (k=1)L3(M) )

2 (I1, IT) 4 (I1, T1)* (I, IT) " (IL, IT)

Suppose now that we are given a positive integer L and would like to guarantee that the
number of codewords on the list produced by the soft-decision decoder does not exceeed L.
In view of Lemma 15, we can do so by computing £, (M) at each iteration of Algorithm A,
and stopping the algorithm just before £ (M) equals or exceeds L + 1. At this point

L < Lu(M) < L+1 (43)

and since the number of codewords on the list produced by the decoder is an integer not
exceeding L(M), this number is at most L. We will refer to this decoding procedure* as
algebraic soft-decoding with list-size limited to L.

Theorem 17. Algebraic soft-decoding with list-size limited to L produces a list that con-
tains a codeword c € C,;(n, k) if

~ Vi
I = -+ 24

_ VET(140() m

where 11 is the reliability matrix derived from the channel output, R* = (k—1)/n is the
rate of C;(n, k—1), and the constant in O(-) depends only on R* and gq.

Proof. Writing M = M1 — J as in Lemma 16 and using the definition of £ (M) in (38),
we can recast the sufficient condition (33) of Lemma11 in the following way

W) (D) VT _
<H5H> ()\ <H,[Q]>> Ek(M) k—1 z \/k—l (45)

Using the expression for A in (42), we now express the factor multiplying (II, [c|) /+/(II, IT)
on the left-hand side of (45) as Fi(Il, L) — Fo(I1, L) — F3(I1, ¢, L), where

def (I, 27 —1)° (J,1-T)
AL = \/ Yrmmeoney T ey -1 W

*In practice, algebraic soft-decoding with list-size limited to L almost always produces lists with much less
than L codewords, most often a single codeword.
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def 1 (I,1-27) 1 n
FolL L) = L(M)VE—1 2,/ 1) S L M)WE—1 2y/n/q (47)
and
Aer ¢ — L (LD VILI) ! L @)

Lio(M)VE—1 (T, [c]) S LuMWVE—1 VE

To obtain the inequality in (47), we have used the fact that (II, 1-27) < (I,1) = n and
(IL,TI) > n/q. To obtain the inequality in (48), we have made use of the following two
observations. First, we have (7, [c]) < (1, [c¢]) = n. Secondly, if IT and ¢ are such that (44)
holds, then a fortiori (II, [c]) /+/(IL,II) > v/k—1. Since L < Ly(M) by (43), it follows from
(47) and (48), respectively, that Fo(II, L) < \/6/2L\/1? and F3(I1, ¢, L) < 1/LR*. In con-
junction with (46) and (45), this completes the proof of the theorem. g

We observe that Theorem 17 is a very loose bound. The actual performance of algebraic
soft-decoding with list-size limited to L is usually orders of magnitude better than that
predicted by (44). In the proof of Theorem 17, we have used the inequality (II, IT) > n/q,
which is a weak lower bound since (II, IT) ~ n for SNRs of practical interest. Replacing
the bound n/q on the right-hand side of (47) by the actual value (II,II), we thus obtain
a somewhat stronger bound, which guarantees that ¢ € C,(n, k) is on the list produced
by the soft-decision decoder, provided

(IL[c) F—1 N F—1

\/(H,H> g 1{ 1 1 Vn B 1_1(%+ 1 )
1_f F+2\/§-1/(H,H) L\R VR

This works well for large L, although (49) is still a loose bound for moderate list sizes.
Nevertheless, the significance of Theorem 17 is that it proves convergence to the asymp-
totic performance at least as fast as O(1/L). Furthermore, the theorem shows that the
size of the list required to approach the asymptotic performance within any given con-
stant does not depend on the length of the code. Note that for Reed-Solomon codes, the
right-hand side of (44) depends on the length n indirectly via the expression /g/2v/R*.
However, for algebraic-geometric codes, we can have arbitrary lengths for a fixed ¢. If one
is willing to accept the approximation on the right-hand side of (49), then the size of the
list depends only on the rate R*, for both Reed-Solomon and algebraic-geometric codes.

(49)

In addition to the analysis of Theorem 17, we have performed extensive simulations
of algebraic soft-decoding with list-size limited to L for various Reed-Solomon codes
over GF(256). As the running channel model, we have assumed an AWGN channel with
a 256-QAM signal constellation. The 256 constellation points were matched to the 256
elements of GF(256) in an arbitrary manner. The reliability matrix I1 was computed by
measuring the distance from the channel output to the four nearest constellation points.
All the entries in II were normalized and quantized to 8 bits of precision.

Simulation results for the (255,144,112) Reed-Solomon code of rate ~0.56 are summa-
rized in Figure 3. One can see from Figure 3 that at codeword error-rates of 10~° and lower,
algebraic soft-decision decoding provides a coding gain of about 1.5 dB, whereas GMD de-
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coding and Guruswami-Sudan decoding achieve coding gains of about 0.2dB and 0.4 dB,
respectively, compared to conventional hard-decision decoding. Although the 1.5dB cod-
ing gain corresponds to asymptotic performance (cf. Theorem 12), it is evident from Fig-
ure 3 that most of this gain can be obtained with very small list sizes. A list of size L =4
already outperforms both GMD and Guruswami-Sudan decoding by a substantial margin,
while a list of size L = 32 approaches the asymptotic performance to within 0.1 dB.

Simulation results for the (204,188,17) shortened Reed-Solomon code of rate ~0.92 are
presented in Figure4. We observe that this code, in conjunction with a 256-QAM signal
constellation, is implemented today in certain satellite communications systems. Here,
algebraic soft-decision decoding provides an ultimate coding gain of about 0.75dB. The
fact that the asymptotic coding gain decreases with the rate of a code is to be expected
since list-decoding, in general, is less effective for high-rate codes. In fact, the asymptotic
performance of Guruswami-Sudan list decoding coincides with that of the conventional
Berlekamp-Wech decoding for the (204, 188,17) code: the Guruswami-Sudan decoder finds
all codewords within Hamming distance of [204(1 — 1/0.92)| = [8.16] = (17—1)/2 from
the (hard-decision) channel output (cf. Theorem 2). In contrast, soft-decision list decoding
does provide a significant coding gain. As in the case of half-rate codes, most of this gain
can be achieved with small list sizes. Moreover, one can see from Figure 4 that the coding
gain grows with SNR. Extrapolating the simulation results to error rates of about 10719
(that are of interest for many applications), one should expect coding gains in excess of
about 1.0dB for high-rate as well as low-rate Reed-Solomon codes.

7. Conclusions

We have shown that interpolation-based decoding can be used to devise an efficient soft-
decision decoding algorithm for Reed-Solomon codes. The soft-decoding algorithm outper-
forms both GMD decoding and Guruswami-Sudan list-decoding by a substantial margin.

The focus of this paper has been the performance achievable in a probabilistic setting,
where the channel output is characterized in terms of a posteriori probabilities rather
than error patterns. This is quite different from several recent papers [12, 17| which focus
on a combinatorial setting, and provide guarantees on the number (and type) of errors
that can be corrected on certain hard-decision channels. In particular, for long codes, the
criterion derived herein for the computation of a multiplicity matrix allows for reliable
transmission at the highest possible rate, although this is not necessarily the criterion
that maximizes the number of correctable errors.

The asymptotic performance of the proposed soft-decoding algorithm for a large number
of interpolation points or, equivalently, for large lists has been characterized in terms
of simple geometric conditions. Moreover, it has been shown that that the asymptotic
performance can be approached arbitrarily closely with list sizes that are bounded by
a constant, even as the length of a code grows beyond all bounds.
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Appendix A. On the underlying probabilistic model

In Section4, in order to convert posterior probabilities (the reliability matrix II) into
interpolation points (the multiplicity matrix M), we regard the transmitted codeword as
arandom vector X = (X}, X, ..., X,) € Z™ and use the following probability distribution

P(z1,%9,...,20) = HPT(Xj=$j|yj=yj) = [ [z 5)
j=1 j=1

where y = (y1,Y2,...,Yn) €Z™ is the vector observed at the channel output (cf. equa-
tion (18) of Section 4). Recall that this distribution corresponds to the following scenario:
a vector X is drawn uniformly at random from the space IFq" and transmitted over a memo-
ryless channel characterized by (6); thereupon the vector y € %™ is observed at the channel
output. Up to certain natural assumptions, this is indeed what happens, except that the
transmitted codeword X is drawn uniformly at random from the code C,(n, k) rather
than the entire space F;'. Thus the a priori distribution of X is Pr(X=z) = Zc(z)/q",
where Z¢(z) : F," — {0,1} is the indicator function for C,(n, k) defined by

def [ 1 ifzeCyn,k)
Te(@) = { 0  otherwise
Given the channel observations y = (y1, Y2, - - -, Yn) € Z™ one can easily compute the true

posterior probability distribution of X as follows

n

P*(@1,25, o mn) E Pr(X=2|Y=y) = 7Zc(@) [[1(z;.5) (50)
j=1
The normalization constant «y in (50) is given by
def 1 n—k H?:l fyj (yj)
: v
hY | RCT™) )
z€C j=1

where f,(+) is the probability-density function of the channel output Y = (Y1, s, ..., V)
(we assume w.l.o.g. that ) is continuous), and fy, () are the marginal probability den-
sities derived from f(-). The expression in (50) follows by repeated application of the
Bayes rule, first to Pr(X=2x |Y=y) and then to Pr(),; =y, | X; =x;). Hence the precise
optimization problem we would like to solve is

Mo (IL,C) ¥ argmaxyse g(c)Ep-{Sm(X)} (52)

where, in contrast to (19), the expectation Ep«{-} is taken with respect to the true posterior
distribution (50). While (52) gives a natural optimality criterion for the computation of
the multiplicity matrix, we shall see that the computation itself is likely to be intractable.

There are two sources of difficulty in performing the maximization in (52). One of these
has to do with the fact that computing P*(z) is difficult, even for a single input vector
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z = (z1,%y,...,7,) € . While Zc(z) and [];_, TI(x;, j) are easy to evaluate, it can be
shown that computing 7 in (51) for an arbitrary reliability matrix II and an arbitrary
linear code C is NP-hard. This difficulty, however, can be avoided as follows. Let

W D@ ) [0 53

g =

U(z)

be a density function. Given a multiplicity matrix M, let us formally define the expected
score with respect to ¥(-) as follows

Eo{Su(X)} € Y Sul@)¥(@) = Y ) Mlz;,j)¥() (54)
zeX™ TER® j=1
Then it is easy to see from (53) and (54) that Ep«{Sy/(X)} and Egx{Sy(X)} differ by
a factor of v that does not depend on the multiplicity matrix M. Thus the knowledge
of v is not essential for the computation of argmax in (52), and we have

Mo (I1,C) def argmaxyec.z(c)Ep- {Su(X)} = argmaxye sc)Eu{Su(X)} (55)

Unfortunately, the second difficulty in the optimization of (52) and (55) is inherent in the
presence of the indicator function Z¢(-) in both P*(-) and ¥(-). Specifically, we now show
that given a polynomial-time algorithm for the computation of My, (II,C) in (55), one
could devise a polynomial-time algorithm for maximume-likelihood hard-decision decoding
of C;(n, k). If C;(n, k) is a general linear code, the latter task is known [3] to be NP-hard.

More precisely, let ¢ be a fixed prime power and let d(-,-) denote the Hamming distance;
then, the following decision problem

Problem: MAXIMUM-LIKELIHOOD DECODING
Instance: Positive integers n, k, t, an (n—k) xn matrix H over F,, and a vector y € F;".
Question: Is there a vector ¢ € IFqn such that d(c,y) <t and He' =07

was shown to be NP-complete by Berlekamp, McEliece, and van Tilborg [3]. Let Q denote
the field of rational numbers. In this appendix, we exhibit a polynomial transformation
from MAXIMUM-LIKELIHOOD DECODING to the following decision problem

Problem: OpTIMAL MULTIPLICITY MATRIX

Instance: Positive integers n, k, and C, an (n—k) x n matrix H over F, which defines
a code C,(n, k), a ¢ x n reliability matrix IT over QQ, and a rational number f.

Question: Is there a matrix M € .#(C) such that Ex{Sy (X)} > 37

It is easy to see that OPTIMAL MULTIPLICITY MATRIX is just a re-formulation of the
optimization problem (55) as a decision problem. Notice that this decision problem is not
necessarily in NP, since given a putative solution M € .#(C), there is no obvious way to
verify that E¢{Sy(X)} > (3 in polynomial time.
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Theorem 18. OPTIMAL MULTIPLICITY MATRIX is NP-hard.

Proof. We reduce from MAXIMUM-LIKELIHOOD DECODING. Given an instance {H, y, t}
of MAXIMUM-LIKELIHOOD DECODING, we generate an instance of OPTIMAL MULTIPLIC-
ITY MATRIX as follows. Fix a rational number € such that 1 > ¢ > ¢*/(¢* + ¢ — 1) and
let 6 = (1 —¢€)/(g—1). This choice of € and § ensures that ¢+ (¢ —1)6 = 1 and €/ > ¢*.
In terms of €, 6, and y, we set Il = € [¥] + 6 (1 — [¥]). The fact that e+ (¢ —1)d =1 im-
plies that IT is a valid reliability matrix. We take § = ne® *6*. Finally, we use the same
parity-check matrix H, and set C = n. This completes the mapping of {H,y,%} onto an
instance {H,II,C, 3} of OPTIMAL MULTIPLICITY MATRIX. -

Suppose that {H,y,t} is a “YES” instance of MAXIMUM-LIKELIHOOD DECODING. Then
there exists a codeword ¢ € C,;(n, k) such that d(c,y) <t. Let M = [c]. It is easy to see
that C(M) = n, and so M € .#(C) for C = n. Furthermore

n

Ee{Su(X)} = Y (M, z)¥(2) = Y ([l [[ Uz, ) > n]]1l(e;5)

TEX™ 2€Cq (n,k) Jj=1 Jj=1

where the inequality follows by retaining a single term in the summation over z € C,(n, k)
that corresponds to z = ¢. With the reliability matrix given by II = € [¥] + § (1 — [¥]),
we further conclude that

n

Eo{Su(X)} > nHH(Cj,j) = pedey) gdey) > pentst = g

=1

where the last inequality follows from the fact that d(c,y) < ¢ and J < e. Therefore if
{H,y,t} is a “YES” instance of MAXIMUM-LIKELIHOOD DECODING then {H,II,C, 8} is
also a “YES” instance of OPTIMAL MULTIPLICITY MATRIX.

Now suppose that {H,y,t} is a “NO” instance of MAXIMUM-LIKELIHOOD DECODING.
Then d(z,y) >t + 1 for all z € Cy(n, k). Observe that for any matrix M € .#(n) and
any vector z € F;', we have (M, [z]) < (M, 1) < C(M) = n. It follows that

Eo{Su(X)} = Y (M, [z)) [[T(z;,5) < D ne 7l = ¢ (g)ﬂ < B
j=1

2€Cqy (n,k) mE(Cq n,k)

for any M € .4 (n). Hence if {H,y,t} is a “NO” instance of MAXIMUM-LIKELIHOOD DE-
CODING then {H,II,C, 3} is a “NO” instance of OPTIMAL MULTIPLICITY MATRIX. |

It follows from Theorem 18 that solving the optimization problem (55) for an arbitrary
linear code C,(n, k) and an arbitrary cost C is NP-hard. It is possible to argue that the
original optimization problem (19) might be also NP-hard for arbitrary costs; nevertheless,
Algorithm A solves this problem for certain specific costs. However, in contrast to (19), the
optimization in (55) remains NP-hard even if we restrict the cost to C = n. Furthermore,
as can be seen from the proof of Theorem 18, maximizing E p« {Sy/ (&)} over all multiplicity
matrices M such that (M,1) = n (this is equivalent to selecting n interpolation points
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regardless of the cost) is still NP-hard. The analogous problem for Ep{S,(X)}, where
P(-) is the distribution in (18) is trivial: it is solved by allocating all the n points at the
position of the largest entry in II.

Finally, one might argue that while the OpTIMAL MULTIPLICITY MATRIX problem has to
do with arbitrary linear codes over F,, the codes involved in the optimization task (55) are
Reed-Solomon codes and thus have a lot of structure. In this context, Theorem 18 shows
that the computation of Moy (I1,C) in (55) subsumes maximum-likelihood hard-decision
decoding of Reed-Solomon codes. No polynomial-time algorithm for maximum-likelihood
hard-decision decoding of Reed-Solomon codes is presently known [26], and the problem
is generally considered to be hard.
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