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Abstract

Given an error-correcting code over strings of length � and an arbitrary input string also of length � ,

the list decoding problem is that of finding all codewords within a specified Hamming distance from the

input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The

list decoding problem for Reed-Solomon codes reduces to the following “curve-fitting” problem over a

field
�

: Given � points �����	��

�������������� , ����������� � , and a degree parameter � and error parameter � , find

all univariate polynomials  of degree at most � such that �!�#"$ %���&�'� for all but at most � values of
( �)�+*���
�
�
�� � � . We give an algorithm that solves this problem for �-, �/.10 � � , which improves over

the previous best result [27], for every choice of � and � . Of particular interest is the case of �&2 �43 �5 ,

where the result yields the first asymptotic improvement in four decades [21].

The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically

alternant codes (a class of codes including BCH codes) and algebraic-geometry codes. In both cases,

we obtain a list decoding algorithm that corrects up to �6.87 � � �9.;:�< � errors, where � is the block

length and : < is the designed distance of the code. The improvement for the case of algebraic-geometry

codes extends the methods of [24] and improves upon their bound for every choice of � and : < . We

also present some other consequences of our algorithm including a solution to a weighted curve fitting

problem, which may be of use in soft-decision decoding algorithms for Reed-Solomon codes.

Keywords: Error-correcting codes, Reed-Solomon codes, Algebraic-Geometry codes, Decoding algorithms,

List decoding, Polynomial time algorithms.
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1 Introduction

An error correcting code � of block length � , rate � , and distance � over a � -ary alphabet � ( ���	�
������
��
code, for short) is a mapping from ��� (the message space) to ��� (the codeword space) such that any pair

of strings in the range of � differ in at least � locations out of ��� . We focus on linear codes so that the

set of codewords form a linear subspace of � � . Reed-Solomon codes are a classical, and commonly used,

construction of linear error-correcting codes that yield ���������
������� �!�
�"�#��$%�&
'� codes for any

�)(%��*+� . The alphabet � for such a code is a finite field , . The message specifies a polynomial of degree

at most � over , in some formal variable - (by giving its �.�/� coefficients). The mapping � maps this

code to its evaluation at � distinct values of - chosen from , (hence it needs �.��01,�032/� ). The distance

property follows immediately from the fact that two degree � polynomials can agree in at most � places.

The decoding problem for an �4�5�����
�.
6� code is the problem of finding a codeword in � � that is within

a distance of 7 from a “received” word 8:9���� . In particular it is interesting to study the error-rate ;=<?>�@�57BA
�
that can be corrected as a function of the information rate CD<?>�@�5�	A
� . For a family of Reed-Solomon codes

of constant message rate and constant error rate, the two brute-force approaches to the decoding problem

(compare with all codewords, or look at all words in the vicinity of the received word) take time exponential

in � . It is therefore a non-trivial task to solve the decoding problem in polynomial time in � . Surprisingly,

a classical algorithm due to Peterson [21] manages to solve this problem in polynomial time, as long as

7E( �GFH�JI �K (i.e. achieves ;G� L
�M$NCPOQABR ). Faster algorithms, with running time STLU� K O or better, are also

well-known: in particular the classical algorithms of Berlekamp and Massey (see [2, 19] for a description)

achieve such running time bounds. It is also easily seen that if 7	2 �GFH�MI �K then there may exist several

different codewords within distance 7 of a received word, and so the decoding algorithm cannot possibly

always recover the “correct” message if it outputs only one solution.

This motivates the list decoding problem, first defined in [7] (see also [8]) and sometimes also termed

the bounded-distance decoding problem, that asks, given a received word 8V9W� � , to reconstruct a list

of all codewords within a distance 7 from the received word. List decoding offers a potential for recovery

from errors beyond the traditional “error-correction” bound (i.e., the quantity �XAYR ) of a code. Loosely,

we refer to a list decoding algorithm reconstructing all codewords within distance 7 of a received word

as an “ 7 error-correcting” algorithm. Again, for a family of ��� �Z���
�[�Z�X�/�!�
���Z��$\�&
 � Reed-

Solomon codes, we can study ;G�]7BAY� as a function of C	�/LU�T�^�BO=AY�	_`�DAB� . Till recently, no significant
a
Usually an error correcting code is defined as a set of codewords, but for ease of exposition we describe it in terms of the

underlying mapping, which also specifies the encoding method, rather than just the set of codewords.
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benefits were achieved using the list decoding approach to recover from errors. The only improvements

known over the algorithm of [21] were decoding algorithms due to Sidelnikov [25] and Dumer [6] which

correct � F �K � � L�������� O errors, i.e., achieve ;E� L
� $ CPOQABR �
	 L
�BO . Recently, Sudan [27], building upon

previous work of Ar et al. [1], presented a polynomial time list decoding algorithm for Reed-Solomon codes

correcting more than LU�	$ �DOQAYR errors, provided � (:� A�� . The exact description of the number of errors

;�
 corrected by this algorithm is rather complicated and can be found in [28] or Figure 1. One lower bound

on the number of errors corrected is �5$
�
R!�H� , thus achieving ; � ;�
�2 � $ � R!C . A more efficient list

decoding algorithm, running in time STLU� K ����� K � O , correcting the same number of errors has been given by

Roth and Ruckenstein [23]. For C���� , this algorithm corrects an error rate ;�� � , thus allowing for nearly

twice as many errors as the classical approach. For codes of rate greater than �BA�� , however, this algorithm

does not improve over the algorithm of [21]. This case is of interest since applications in practice tend to

use codes of high rates.
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Figure 1: Error-correcting capacity plotted against the rate of the code for known algorithms.

In this paper we present a new polynomial-time algorithm for list-decoding of Reed-Solomon codes (in

fact Generalized Reed-Solomon codes, to be defined in Section 2) that corrects up to (exactly) �6�)$ � �P�E$%���
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errors (and thus achieves ;G� �M$ � C ). Thus our algorithm has a better error-correction rate than previous

algorithms for every choice of C59	L � � �BO ; and in particular, for C � � A�� our result yields the first asymptotic

improvement in the error-rate ; , since the original algorithm of [21]. (See Figure 1 for a graphical depiction

of the relative error handled by our algorithm in comparison to previous ones.)

We solve the decoding problem by solving the following (more general) curve fitting problem: Given �
pairs of elements

� LU- � ��� � O
������� �?L - � ��� � O
	 where -�� ����� 9 , , a degree parameter � and an error parameter

7 , find all univariate polynomials 
 such that 
PLU-���O ����� for at least �5$ 7 values of �G9 � �!�������U����	 . Our

algorithm solves this curve fitting problem for 7 (:�5$ � �P� . Our algorithm is based on the algorithm of

[27] in that it uses properties of algebraic curves in the plane. The main modification is in the fact that we

use the properties of “singularities” of these curves. As in the case of [27] our algorithm uses the notion of

plane curves to reduce our problem to a bivariate polynomial factorization problem over , (actually only

a root-finding problem for univariate polynomials over the rational function field , L��NO ). This task can be

solved deterministically over finite fields in time polynomial in the size of the field or probabilistically in

time polynomial in the logarithm of the size of the field and can also be solved deterministically over the

rationals and reals [14, 17, 18]. Thus our algorithm ends up solving the curve-fitting problem over fairly

general fields.

It is interesting to contrast our algorithm with results which show bounds on the number of codewords

that may exist with a distance of 7 from a received word. One such result, due to Goldreich et al. [13],

shows that the number of solutions to the list decoding problem for a code with block length � and minimum

distance � , is bounded by a polynomial in � as long as 7 (%� $ 7 � L � $��HO . (A similar result has also been

shown by Radhakrishnan [22].) Our algorithm proves this best known combinatorial bound “constructively”

in that it produces a list of all such codewords in polynomial time. More recently, Justesen [16] has obtained

upper bounds on the maximum number of errors 7 �\7���� ��� � for which the output of a list decoding algorithm

can be guaranteed to have at most � solutions, for constant � . The results of Justesen show that in the limit

of large � , 7 ��� ��� � AB� converges to � $ 7 �M$�� AY� as we fix � AY� and let � ��� . These bounds are of interest

in that they hint at a potential limitation to further improvements to the list decoding approach.

Finally we point out that the main focus of this paper is on getting polynomial time algorithms maxi-

mizing the number of errors that may be corrected, and not optimizing the runtime of any of our algorithms.

Extensions to Algebraic-Geometry Codes Algebraic-geometry codes are a class of algebraic codes that

include the Reed-Solomon codes as a special case. These codes are of significant interest because they

yield explicit construction of codes that beat the Gilbert-Varshamov bound over small alphabet sizes [29]
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(i.e., achieve higher value of � for infinitely many choices of � and � than that given by the probabilistic

method). Decoding algorithms for algebraic-geometry codes are typically based on decoding algorithms for

Reed-Solomon codes. In particular, Shokrollahi and Wasserman [24] generalize the algorithm of Sudan [27]

for the case of algebraic-geometry codes. Specifically, they provide algorithms for factoring polynomials

over some algebraic function fields; and then show how to decode using this factoring algorithm. Using a

similar approach, we extend our decoding algorithm to the case of algebraic-geometry codes and obtain a

list decoding algorithm correcting an �����
�P��� 
 � algebraic-geometry code for up to 7 (%� $ 7 � L � $��HO errors,

improving the previously known bound of � $ 7 R!� LU� $��HO $�� ��� errors (here � is the genus of the algebraic

curve underlying the code). This algorithm uses a root-finding algorithm for univariate polynomials over

algebraic function fields as a subroutine and some additional algorithmic assumptions about the underlying

algebraic structures: The assumptions are described precisely in Section 4.

Other extensions One aspect of interest with decoding algorithms is how they tackle a combination of

erasures (i.e, some letters are explicitly lost in the transmission) and errors. Our algorithm generalizes

naturally to this case. Another interesting extension of our algorithm is the solution to a weighted version

of the curve-fitting problem
K
: Given a set of � pairs

� L - � ��� � O
	 and associated non-negative integer weights

�
� �������Q�

� � , find all polynomials 
 such that � ��� ���
	���
������ � � ��� ����� ���� � �
K
� . This generalization may be

of interest in “soft-decision” decoding of Reed-Solomon codes.

2 Generalized Reed-Solomon Decoding

We fix some notation first. In what follows , is a field and we will assume arithmetic over , to be of unit

cost. �4� 
 will denote the set
� �!�������Q����	 . For a vector �-	95, � and ��9 ���D
 , the notation �- � will denote the � th

coordinate of �- . � L��-P����HO is the Hamming distance between strings �- and �� , i.e., 0 � �
0��- ���� �� � 	H0 .

Definition 1 (Generalized Reed-Solomon codes) For parameters ����� and a field , of cardinality � , a

vector �! of distinct elements ! � � ! K �������Q� ! � 9 , (hence we need � * � ), and a vector �" of non-zero

elements " � �������Q� " � 9%, , the Generalized Reed-Solomon code #%$'&)( � � � � �+*, �-*. , is the function mapping the
/
The evolution of the solution to the “curve-fitting” problem is somewhat interesting. The initial solutions of Peterson [21] did

not explicitly solve the curve fitting problem at all. The solution provided by Welch and Berlekamp [32, 3] do work in this setting,

even though the expositions there do not mention the curve fitting problem (see in particular, the description in [12]). Their problem

statement, however, disallows repeated values of 0 � . Sudan’s [27] allows for repeated 0 � ’s but does not allow for repeated pairs of1 0 ��2435�76 . Our solution generalizes this one more step by allowing a weighting of
1 0 ��2438�-6 !
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messages , � I � to code space , � , given by # $'& ( � � � � � *, �-*. L �� O�� � " � � �
�
����� �� � I � L ! � O � , for �� 9�, � I � and

� *�� *%� .

Problem 1 (Generalized Reed-Solomon decoding)

INPUT: Field , , � , � , �� � �" 95, � specifying the code # $ & ( � � � � � *, �-*. . A vector ���9	, � and error parameter 7 .
OUTPUT: All messages �� 95, � I � such that � L�# $'& ( � � � � � *, �-*. L �� O����� O�*%7 .
Problem 2 (Polynomial reconstruction)

INPUT: Integers �P�
	 and � points
� LU-�� ����� O
	 ��-� � where - �U����� 95, .

OUTPUT: All univariate polynomials 
 of degree at most � such that � �E� 
PL -�� O for at least 	 values of

� 9 �4� 
 .

The following proposition is easy to establish:

Proposition 2 The generalized Reed-Solomon decoding problem reduces to the polynomial reconstruction

problem.

Proof: It is easily verified that the instance LU, �����
�P���! � �" ����H��7BO of the GRS decoding problem reduces to the

instance LU�P�
� $ 7!����� � L ! � ��� � A " � O
	 ��-� � O of the polynomial reconstruction problem.

2.1 Informal description of the algorithm

Our algorithm is based on the algorithm of [27], and so we review that algorithm first. The algorithm has

two phases: In the first phase it finds a polynomial � in two variables which “fits” the points LU- � ��� � O , where

fitting implies �TLU- � ��� � O�� � for all �.9:���D
 . Then in the second phase it finds all small degree roots of

� i.e finds all polynomials 
 of degree at most � such that �ELU- ��
PLU-3OQO
� � or equivalently �.$�
PLU-3O is a

factor of �ELU- ��� O ; and these polynomials 
 form candidates for the output. The main assertions are that

(1) if we allow � to have a sufficiently large degree then the first phase will be successful in finding such

a bivariate polynomial, and (2) if � and 
 have low degree in comparison to the number of points where

� � $ 
PLU- � O ���TLU- � ��� � O � � , then � $ 
3LU-PO will be a factor of � .

Our algorithm has a similar plan. We will find � of low weighted degree that “fits” the points. But now

we will expect more from the “fit”. It will not suffice that �ELU- � ��� � O is zero — we will require that every point

LU- � ��� � O is a “singularity” of � . Informally, a singularity is a point where the curve given by �TLU- ���HO � �
intersects itself. We will make this notion formal as we go along. In our first phase the additional constraints

will force us to raise the allowed degree of � . However we gain (much more) in the second phase. In this
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phase we look for roots of � and now we know that 
 passes through many singularities of � , rather than

just points on � . In such a case we need only half as many singularities as regular points, and this is where

our advantage comes from.

Pushing the idea further, we can force � to intersect itself at each point L - � ��� � O as many times as we

want: in the algorithm described below, this will be a parameter � . There is no limit on what we can choose� to be: only our running time increases with � . We will choose � sufficiently large to handle as many errors

as feasible. (In the weighted version of the curve fitting problem, we force the polynomial � to pass through

different points a different number � � times, where � � is proportional to the weight of the point.)

Finally, we come to the question of how to define “singularities”. Traditionally, one uses the partial

derivatives of � to define the notion of a singularity. This definition is, however, not good for us since the

partial derivatives over fields with small characteristic are not well-behaved. So we avoid this direction and

define a singularity as follows: We first shift our coordinate system so that the point LU- � ��� � O is the origin. In

the shifted world, we insist that all the monomials of � with a non-zero coefficient be of sufficiently high

degree. This will turn out to be the correct notion. (The algorithm of [27] can be viewed as a special case,

where the coefficient of the constant term of the shifted polynomial is set to zero.)

We first define the shifting method precisely: For a polynomial �TLU- ���HO and ! � � 9 , we will say that

the shifted polynomial � , � � LU- ��� O is the polynomial given by � , � � LU- ���HO����TLU-E� ! ���G� � O . Observe that

the following explicit relation between the coefficients
� � � � 	 of � and the coefficients

� LU� , � � O � ��	 of � , � �
holds:

LU� , � � O � � ���
����� � �� �	� �



���
��
 


���
��
 � � � � � � ! � � F � � � � F � �

In particular observe that the coefficients are obtained by a linear transformation of the original coefficients.

2.2 Algorithm

Definition 3 (weighted degree) For non-negative weights � � � � K , the L � � � � K O -weighted degree of the mono-

mial - � � � is defined to be � � � � � � K . For a bivariate polynomial �ELU- ��� O , and non-negative weights � � � � K ,
the L � � � � K O -weighted degree of � , denoted L � � � � K O - ��� - ��� � L �EO , is the maximum over all monomials with

non-zero coefficients in � of the L � � � � K O -weighted degree of the monomial.

We now describe our algorithm for the polynomial reconstruction problem.

Algorithm Poly-Reconstruct:

Inputs: ���
�P�
	 , � L - � ��� � O
	 ��-� � , where - � ��� � 95, .

6



Step 0: Compute parameters �B��� such that

� 	 � � and �

 � �%�
R 
 ( � L�� � R&O

R �
In particular, set

� <?>�@� � �
�
�H� � 7 � K � K ���HL 	 K $ �H� O

R&L 	 K $N�H� O �� <?>�@� � 	 $ �
Step 1: Find a polynomial �EL - ��� O such that L
�!���DO -��� - ��� �DL �TO *�� , i.e., find values for its coefficients

� � � a � / 	 � a � � / � � � � a I � � /	��
 such that the following conditions hold:

1. At least one � � a � � / is non-zero

2. For every ��9 �4� 
 , if � � �-
 is the shift of � to LU- � ��� � O , then all coefficients of � � �-
 of total degree

less than � are � . More specifically:� ��9 ���D
 � � � � � � K 2 �H� s.t. � � � � K ( �B�
� � �-
� a � / <?>'@� �

� �a � � a �
� �/ � � /



� ��� � 




� �K
� K 
 � � �a � � �/ - � �a F � a� � � �/ F � /� �
� �

Step 2: Find all polynomials 
N9�
G� � ��
 of degree at most � such that 
 is a root of � (i.e, �E$ 
3LU-PO is a

factor of �TLU- ���HO ). For each such polynomial 
 check if 
PLU- � O � � � for at least 	 values of ��9 ���D
 , and

if so, include 
 in output list.

End Poly-Reconstruct

2.3 Correctness of the Algorithm

We now prove the correctness of our algorithm. In Lemmas 4 and 5, � can be any polynomial returned in

Step 1 of the algorithm.

Lemma 4 If L - � ��� � O is an input point and 
 is any polynomial such that � � � 
PLU- � O , then LU-.$ - � O�� divides

�PLU-PO <?>�@� �TLU- ��
PLU-PO=O .

Proof: Let 
 �6LU-PO be the polynomial given by 
 � L -PO � 
3LU-)�]- � OM$ � � . Notice that 
 �6L �&O � � . Hence


 � LU-3O��Z- 
 � � LU-PO , for some polynomial 
 � � L -PO . Now, consider � � LU-3O <?>'@� � � �-
 LU- ��
 � LU-3OQO . We first argue that

� � LU-.$ - � O � �PLU-PO . To see this, observe that

� L -PO����ELU- ��
PL -POQO � � � ��
 LU-�$ - � ��
PLU-3O3$�� � O �
7



� � �-
 LU-�$N- � ��
 � L -�$ - � O=O � � � L -�$ - � O��
Now, by construction, � � �-
 has no coefficients of total degree less than � . Thus by substituting � �]- 
 � � LU-PO
for � , we are left with a polynomial � � such that - � divides � � LU-PO . Shifting back we have LU- $N- � O � divides

� � LU-.$ - � O � �PLU-PO .
Lemma 5 If 
PL -PO is a polynomial of degree at most � such that � � � 
PLU- � O for at least 	 values of �G9 ���D

and � 	 � � , then � $ 
PLU-3O divides � .

Proof: Consider the polynomial � L -PO � �EL - ��
3LU-POQO . By the definition of weighted degree, and the fact

that the L��!�
�DO -weighted degree of � is at most � , we have that � is a polynomial of degree at most � . By

Lemma 4, for every � such that � �G� 
PL -�� O , we know that LU-)$ - � O � divides �PLU-PO . Thus if
�

is the set of

� such that ���G� 
PLU- � O , then � ����� LU-)$ - � O � divides � L -PO . (Notice in particular that - � �� - � for any pair

� �� ��9 �
, since then we would have LU- � ����� OM� L -�� ��
PLU- �'OQOM� LU- � ��
PLU- � OQO � LU- � ��� � O .) By the hypothesis

0 � 0!2 	 , and hence we have a polynomial of degree at least � 	 dividing � which is a polynomial of degree at

most � ( � 	 . This can happen only if � � � . Thus we find that 
PLU-3O is a root of �TLU- ���HO (where the latter is

viewed as a polynomial in � with coefficients from the ring of polynomials in - ). By the division algorithm,

this implies that � $ 
3LU-PO divides �EL - ��� O .

All that needs to be shown now is that a polynomial � as sought for in Step 1 does exist. The lemma below

shows this conditionally.

Lemma 6 If ��� � I �K
	 ( 
 � 
 I K 
K � , then a polynomial � as sought in Step 1 does exist (and can be found in

polynomial time by solving a linear system).

Proof: Notice that the computational task in Step 1 is that of solving a homogeneous linear system. A

non-trivial solution exists as long as the rank of the system is strictly smaller than the number of unknowns.

The rank of the system may be bounded from above by the number of constraints, which is � � � I �K 	 . The

number of unknowns equals the number of monomials of L
�!���DO -weighted degree at most � and this number

equals ���
���
� / ���


 F � � /�
� a ��� � �

���
���
� / ��� L �D�%�M$ � � K O

� L��H�\�BO���� ���� �%��� $ � R � ���� ��� ���� �\���
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2 � � ���� �%� � � � �^�M$ �
R �

2 �
� �

�H� R
R �

and the result follows.

Lemma 7 If ���
�P�
	 satisfy 	
K � �H� , then for the choice of �B��� made in our algorithm, ��� � I �K
	 ( 
 � 
 I K 
K � and� 	 � � both hold.

Proof: Since � <?>'@� � 	 $+� in our algorithm, � 	 � � certainly holds. Using � � � 	 $%� , we now need to satisfy

the constraint

�

 � �\�
R 
 ( L � 	 $ � OQL � 	 �%�BOR!�

which simplifies to � K 	 K $%� � �H� L � K � � O or, equivalently,

� K L 	 K $ �H� O $ �H� �G$+� � ���
Hence it suffices to pick � to be an integer greater than the larger root of the above quadratic, and therefore

picking � �/�J� �
�H�.� 7 � K � K � �HL 	 K $ �H� O

R&L 	 K $ �H� O �
suffices, and this is exactly the choice made in the algorithm.

Theorem 8 Algorithm Poly-Reconstruct on inputs ���
�P�
	 and the points
� LU- � ��� � O � � * � * ��	 , correctly

solves the polynomial reconstruction problem provided 	 � �
�H� .

Proof: Follows from Lemmas 5, 6 and 7.

We can also infer an upper bound on the number of codewords within radius 7E(+�)$ � �H� in a Gener-

alized Reed-Solomon code. This bound is already known even for general (even non-linear codes) [13, 22].

Our result can be viewed as a constructive proof of this bound for the specific case of Generalized Reed-

Solomon codes.

Proposition 9 The number of codewords that lie within an Hamming ball of radius 7	( ��$
�
�H� in an

�����
� �^� ��� 
 � Generalized Reed-Solomon code is STL
�
�H� � O (which is in turn SELU� K O ).
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Proof: By Lemma 5, the number
�

of such codewords is at most the degree ��� � � L �EO of the bivariate

polynomial � in � . Since the L
�!�
�DO -weighted degree of � is at most � , ��� � � L �EO * � � AY� � . Choosing

	��
� �
�H� � �^� (which corresponds to the largest permissible value of the radius 7 ), we have, by the choice

of � , that
� �\SEL �� O �^STL �H��	� O��^SEL � �H� � O
�

as desired.

Corollary 10 For a family of constant (relative) rate C Generalized Reed-Solomon codes, the number of

codewords in a Hamming ball of (relative) radius � �/� $NL
������O � C , for any constant � � � , is SEL
�BA�� K O .

2.4 Runtime of the Algorithm

We now verify that the algorithm above can be implemented to run efficiently (in polynomial in � time) and

also provide rough (but explicit) upper bounds on the number of operations it performs.

Proposition 11 The algorithm above can be implemented to run using SEL�����	 �
��
 � ��
��� 
 / F � � 
 � �


��� 
 	!O field opera-

tions over , , provided 01,�0 *%R � .
�

Proof: (Sketch) The homogeneous system of equations solved in Step 1 of the algorithm clearly has at

most STL�� K AY�DO unknowns (since ��� � � L �EOM* � � AY� � and ��� � 	 L �TOM* � ). Hence using standard methods, Step

1 can be implemented using SELQL � K AY�DO � O �#SEL���� AY� � O field operations. We claim that this is the dominant

portion of the runtime and that Step 2 can be implemented to run within this time using standard bivariate

polynomial factorization techniques. We sketch some details on the implementation of Step 2 below.

To implement Step 2, we first compute the discriminant � LU-3O � ������� � L �ELU- ��� OQO of �ELU- ��� O with respect

to � (treating it as a polynomial in � with coefficients in ,E� � 
 ). Therefore � 9 ,E� ��
 , and also ��� � L�� OM*
R � 	 � � where � 	 , � � are the degrees of � in - and � respectively. This bound on the degree of � follows

easily from the definition of the discriminant (see for instance [5]), and it is also easy to prove that the

discriminant � can be computed in STL � 	 ���� O field operations.

Next we find an ! 95, such that � L ! O ��
� . This can be done deterministically by trying out an arbitrary

set of LUR ��	 ��� �%� O field elements because of the bound we know on the degree of � . Now, by the definition

of the discriminant, for such an ! , �TL ! ���HO is square-free as an element of ,E���E
 .


In this analysis as well as the rest of the paper, we use the big-Oh notation to hide constants. We stress that these are universal

constants and not functions of the field size � ��� .
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We then compute the shifted polynomial � � LU- ��� O <?>'@� �ELU-.� ! ��� O , so that � � L �H��� O is square-free. Now

we use the algorithm in [11] that can compute all roots 
595,E��- 
 of a bivariate polynomial 8 LU- ���HO such that

8 L �H���HOM9 ,E��� 
 is square-free, in SEL � K ��� ��� K LU8 OQO time. This gives us a list of all polynomials 
 � LU-PO such

that � $ 
 � LU-PO divides � � LU- ��� O ; by computing 
PLU-PO ��
 � LU-�$ ! O for each such 
 � gives us the desired list of

roots 
3LU-PO of �TLU- ���HO . It is clear that once ! is computed, all the above steps can be performed in at most

SEL � K � K� O field operations.

Summing up, Step 2 can be performed using

STL � 	 � �� � � 	 � � � � K � K� O �^S
� ���
� � � � K�� �^S � ���� �

�

field operations.

The entire algorithm can thus be implemented to run in SEL�� � AY� � O field operations and since

� �^STL�����	 � �H� 		 K $ �H� �
	 	!O

the claimed bound on the runtime follows.

Theorem 12 The polynomial reconstruction problem can be solved in time SEL � ��� O , provided 	 �
�
�H� , for

any field , of cardinality at most R � . Furthermore, if 	
K � L
�M��� OU�H� , then the problem can be solved in

time SELU� � � F � O .

Proof: Follows from Proposition 11 and Theorem 8.

Corollary 13 Given a family of Generalized Reed-Solomon codes of constant message rate C , an error-rate

of ; � � $ � C can be list-decoded in time SEL �3���?O . When ; ( � $ � C , then the decoding time reduces to

SEL � � L���$N; $ � C O F � K O �^SEL � � O .

3 Some Consequences

First of all, since the classical Reed-Solomon codes are simply a special case of Generalized Reed-Solomon

codes, Corollary 13 above holds for Reed-Solomon codes as well. We now describe some other easy con-

sequences and extensions of the algorithm of Section 2. The first three results are just applications of the

curve-fitting algorithm. The fourth result revisits the curve-fitting algorithm to get a solution to a weighted

curve-fitting problem.
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3.1 Alternant codes

We first describe a family of codes called alternant codes that includes a wide family of codes such as BCH

codes, Goppa codes etc.

Definition 14 (Alternant Codes ([19], � 12.2)) For positive integers � �
� � ��� , prime power � , the field ,:�
#�� LU��� O , a vector �! of distinct elements ! � �������Q� ! � 9 #���LU��� O , and a vector �" of nonzero elements

"
� �������Q�

" � 9 #���L � � O , the alternant code � � � � � ��� � *, �-*. comprises of all the codewords of the Generalized

Reed-Solomon code defined by # $'& ( � � � ��� � *, ��*. that lie in 	 , LU� O � .

Since the Generalized Reed-Solomon code has distance exactly � $)� � � � , it follows that the respective

alternant code, being a subcode of the Generalized Reed-Solomon code, has distance at least �	$%� � �`� .
We term this the designed distance � � � �	$ � � �]� of the alternant code. The actual rate and distance of

the code are harder to determine. The rate lies somewhere between ��$ � LU�5$+� � O and � � and thus the

distance � lies between � � and � � � . Playing with the vector �" might alter the rate and the distance (which is

presumably why it is used as a parameter).

The decoding algorithm of the previous section can be used to decode alternant codes as well. Given a

received word L � � �������Q� � � O 9 #���LU� O � , we use as input to the polynomial reconstruction problem the pairs
� LU- � ��� � O
	 ��-� � , where - � � ! � and � � � � � A " � are elements of #�� LU��� O . The list of polynomials output

includes all possible codewords from the alternant code. Thus the decoding algorithm for the earlier section

is really a decoding algorithm for alternant codes as well; with the caveat that its performance can only be

compared with the designed distance, rather than the actual distance. The following theorem summarizes

the scope of the decoding algorithm.

Theorem 15 Let � be an �����
� �^� ��� 
 � alternant code with designed distance � � (and thus satisfying �
� *

� � * � ). Then there exists a polynomial time list decoding algorithm for � decoding up to 7\( �N$
7 � LU� $�� � O errors.

(We note that decoding algorithms for alternant codes given in classical texts seem to correct � � AYR errors.

For the more restricted BCH codes, there are algorithms that decode beyond half the designed distance (cf.

[9] and also [4, Chapter 9]).

3.2 Errors and Erasures decoding

The algorithm of Section 2 is also capable of dealing with other notions of corruption of information. A

much weaker notion of corruption (than an “error”) in data transmission is that of an “erasure”: Here a

12



transmitted symbol is either simply “lost” or received in obviously corrupted shape. We now note that the

decoding algorithm of Section 2 handles the case of errors and erasure naturally. Suppose � symbols were

transmitted and � � * � were received and � symbols got erased. (We stress that the problem definition

specifies that the receiver knows which symbols are erased.) The problem just reduces to a polynomial

reconstruction problem on � � points. An application of Theorem 12 yields that 7 errors can be corrected

provided 7 (%� � $ � � � � . Thus we get:

Theorem 16 The list-decoding problem for �����
� �\�!��� 
 � Reed-Solomon codes allowing for 7 errors and �

erasures can be solved in polynomial time, provided 7J��� (%� $ 7 L � $�� OU� .

The classical results of this nature show that one can solve the decoding problem if R!7J��� (+� $N� . To

compare the two results we restate both result. The classical result can be rephrased as

� $ L�� � 7BO � � $��J� �R �

while our result requires that

�)$NL��J� 7BO � � L � $�� OU� �
By the AM-GM inequality it is clear that the second one holds whenever the first holds.

3.3 Decoding with uncertain receptions

Consider the situation when, instead of receiving a single word � � � � ��� K �������Q��� � , for each ��9:���D
 we

receive a list of � possibilities � � � ��� � K �������Q��� � 
 such that one of them is correct (but we do not know which

one). Once again, as in normal list decoding, we wish to find out all possible codewords which could have

been possibly transmitted, except that now the guarantee given to us is not in terms of the number of errors

possible, but in terms of the maximum number of uncertain possibilities at each position of the received

word. Let us call this problem decoding from uncertain receptions. Applying Theorem 12 (in particular by

applying the theorem on point sets where the - � ’s are not distinct) we get the following result.

Theorem 17 List decoding from uncertain receptions on a �����
� �^� ���E�]� $ �&
'� Reed-Solomon code can

be done in polynomial time provided the number of “uncertain possibilities” � at each position � 9]�4� 
 is
(strictly) less than � AY� .
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3.4 Weighted curve fitting

Another natural extension of the algorithm of Section 2 is to the case of weighted curve fitting. This case

is somewhat motivated by a decoding problem called the soft-decision decoding problem (see [31] for a

formal description), as one might use the reliability information on the individual symbols in the received

word more flexibly by encoding them appropriately as the weights below instead of declaring erasures. At

this point we do not have any explicit connection between the two. Instead we just state the weighted curve

fitting problem and describe our solution to this problem.

Problem 3 (Weighted polynomial reconstruction)

INPUT: � points
� LU- � ��� � O
������� �?LU- � ��� � O
	 , � non-negative integer weights � � �������Q� � � , and parameters �

and 	 .
OUTPUT: All polynomials 
 such that � ��� ����	���
�� ��� � � is at least 	 .

The algorithm of Section 2 can be modified as follows: In Step 1, we could find a polynomial � which has

a singularity of order � ��� at the point LU- � ��� � O . Thus we would now have � ���� � ����� � I �K 	 constraints. If a

polynomial 
 passes through the points LU- � ��� � O for �M9 � , then � $ 
PLU-3O will appear as a factor of �EL - ��� O
provided � � ��� � � � is greater than L
�!���DO - ��� - ��� � L �TO . Optimizing over the weighted degree of � yields the

following theorem.

Theorem 18 The weighted polynomial reconstruction problem can be solved in time polynomial in the sum

of � � ’s provided 	 � � � � ��-� � �
K
� .

Remark: The fact that the algorithm runs in time pseudo-polynomial in � � ’s should not be a serious prob-

lem. Given any vector of real weights, one can truncate and scale the � � ’s without too much loss in the value

of 	 for which the problem can be solved.

4 Algebraic-Geometry Codes

We now describe the extension of our algorithm to the case of algebraic-geometry codes. Our extension

follows along the lines of the algorithm of Shokrollahi and Wasserman [24]. Our extension shows that the

algebra of the previous section extends to the case of algebraic function fields, yielding an approach to the

list decoding problem for algebraic-geometry codes. In particular it reduces the decoding problem to some

basis computations in an algebraic function field and to a factorization (actually root-finding) problem over

the algebraic function field. However neither of these tasks is known to be solvable efficiently given only
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the generator matrix of the linear code. It is conceivable however that given some polynomial amount of

additional information about the linear code, one can solve both parts efficiently. In fact for the former task

we show that this is indeed the case; for the latter part we are not aware of any such results. For certain

representations of some function fields, Shokrollahi and Wasserman [24] give factorization algorithms that

run in time polynomial in the representation of the field. It is not however still clear if these representations

are of size that is bounded by some polynomial in the block length of the code. Thus the results of this

section are best viewed as reductions of the list-decoding problem to a factorization problem over algebraic

function fields.

Much of the work of this section is in ferreting out the axioms satisfied by these constructions, so as to

justify our steps. We do so in Section 4.1. Then we present our algorithm for list decoding modulo some

algorithmic assumptions about the underlying structures. Under these assumptions, our algorithm yields an

algorithm for list decoding which corrects up to 7 (+� $ 7 � LU� $�� O errors in an �����
�P���!
6� code, improving

over the result of [24], which corrects up to 7 (+� $ 7 R!� LU� $ � O $ � �%� errors.

4.1 Definitions

An algebraic-geometry code is built over a structure termed an algebraic function field. Definitions and basic

properties of these codes can be found in [15, 26]; for purposes of self-containment and ease of exposition,

we now develop a slightly different notation to express our results.

An algebraic function field is described by a six-tuple � �]L�
 �?� �)���5����� � ������� O , where:
 � is a finite field with � elements, with 
 � denoting its algebraic closure.

� is a set of points (typically some subset of (variety in) 
 � 
 , but this will be irrelevant to us).

� is a subset of � , called the rational points of � .

� is a set of functions from � to 
G�	� � � 	 (where � is a special symbol representing an undefined

value). It is usually customary to refer to just � as the function field (and letting the other components

of � be implicit).

�
��� � �
� � ��� . �
��� L��D�
-3O is called the order of the function � at point - .
� is a non-negative integer called the genus of � .

The components of � always satisfy the following properties:

1. � is a field extension of 
G� : � is endowed with operations � and � giving it a field structure.

Furthermore, for � � �^9]� , the functions �	� � and ��� � satisfy � LU-3O � �PLU-PO � L��	� �POQLU-PO and
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L�� �'�POQLU-PO � � L -PO �'� LU-3O , provided � LU-PO and � LU-3O are defined. Finally, corresponding to every

! 9 
 � , there exists a function ! 9 � s.t. ! LU-PO � ! for every � 9 � . (In what follows we let ! �
denote the function ! � � .)

2. Rational points: For every ��9	� and -59 � , � LU-3O 9 
 � � � � 	 .

3. Order properties: (The order is a common generalization of the degree of a function as well as its

zeroes. Informally, the quantity � 	 � � � ����� ��� � 	�

	 � �
���!L�� ��-PO is analogous to the degree of a function.

If �
���&L��D�
-POE( � , then the negative of � ���&L��D�
-3O is the number of zeroes � has at the point - . The

following axioms may make a lot of sense when this is kept in mind.)

For every � � � 95� $ � � 	 , ! � � 9 
 � , -59 � : the order function �
��� satisfies:

(a) � LU-3O �
����
 � ��� L�� ��-PO ( � ; � LU-PO � � ��
 �
���!L�� ��-PO � � .

(b) �
���!L�� � �3��-PO�� �
��� L��D�
-POP� � ��� L+�3��-PO .
(c) �
���!L ! �.� � �3��-PO * ����	 � � ��� L�� ��-PO
� �
���BL �3��-PO
	 .

4. Distance property: If � 	 � � �
���&L�� O ( � , then � � � . (This property is just the generalization of the

well-known theorem showing that a degree � polynomial may have at most � zeroes.)

5. Rate property: Observe that, by Property 3(c) above, the set of functions � � � 	 � � � 0 �
��� L��D�
-PO * � 	
form a vector space over 
G� , for any - 9 � and �)9 � . Of particular interest will be functions

which may have positive order at only one point - � 9 � and nowhere else. Let � � � 	 denote the set
� �N9 � 0 � ��� L�� ��-POM* ��� � ��� L�� ���HOM* �H� � �)9 � $ � - 	 	 . Since � � � 	 ��� � � 	�� L � ��� � F�� 	�� � � � � O , we

have that � is also a vector space over 
G� . The rate property is that for every ��9 � , -59 � , � � � 	 is a

vector space of dimension at least �&$�� � � . (This property is obtained from the famed Riemann-Roch

theorem for the actual realizations of � , and in fact the dimension is exactly �P$ � � � if � � R�� $ R .)
The following lemma shows how to construct a code from an algebraic function field, given � �^� rational

points.

Lemma 19 If there exists an algebraic function field � �]L 
 � � �)� �	�
��� � ���
� �BO with �G� � distinct rational

points - ��� - � �������Q�
- � , then the linear space � � � L�� LU- � O
�������Q� � LU- � O=O 0 �N9�� � I�� F � � 	 � 	 form an ������� � ��� � 
 �
code for some � � 2+� and � � 2%� $ �.$ � �%� .
Proof: For � 2 � , by Property 2, we have that � LU-�� O 9 
 � � � � 	 , and by Property 3a we have that � L - � O ��
� . Thus � � 
 �� . By Property 4, the map !#" � � � I�� F � � 	 � $ � 
 �� given by �%$�VL�� LU- � O
��� LU- K O
������� � � LU- � OQO
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is one-one, and hence �����	L'� O�� �����5L � � I�� F � � 	 � O . By Property 5, this implies � has dimension at least � ,
yielding � � 2%� . Finally, consider � � �� � K 9 � � I�� F � � 	 � that agree in � � � places. If � � and � K agree at - � ,
then L�� � $ � K OQLU- � O �
� and thus by Property 3a, � ��� L�� � $ � K �
- � O (
� . Furthermore, we have that for every

-�9 � $ � - � 	 , �
���!L�� � $ � K �
-POM* � . Finally at - � we have �
���!L�� � $ � K �
- � OM*]�E� �T$+� . Thus summing

over all - 9 � , we have � 	 � � �
��� L�� � $ � K ��-PO ( � and thus � � $ � K � � using Property 4 above. This

yields the distance property as required.

Codes constructed as above and achieving �HAY�����DAY� � � (in the limit of large � ) are known for constant

alphabet size � . In fact, such codes achieving bounds better than those known by probabilistic constructions

are known for �E2 � � [29].

4.2 The Decoding Algorithm

We now describe the extension of our algorithm to the case of algebraic-geometry codes. As usual we will

try to describe the data points
� LU- � ��� � O
	 by some polynomial � . We follow [24] and let � be a polynomial

in a formal variable � with coefficients from � (i.e., ��� � 
 9 �N� �!
 ). Now given a value of � � 9 
G� , �.� � � 

will yield an element of � . By definition such an element of � has a value at - � 9 � and just as in [24]

we will also require �TLU- � ��� � O � �.� � � 
'L - � O to evaluate to zero. We, however, will require more and insist

that LU- � ��� � O “behave” like a zero of multiplicity � of � ; since - � 9�� and � � 9 
 � , we need to be careful in

specifying the conditions to achieve this. We, as in [24], also insist that � has a small (but positive) order �
at - � for any substitution of � with a function in � of order at most ! <?>'@�5�T� ��$%� at the point - � . Having

found such a � , we then look for roots �X95� of � .

What remains to be done is to explicitly express the conditions (i) LU- � ��� � O behaves like a zero of order� of � for ��* �M*]� , and (ii) �
���&L ��� � 
 �
- � O * � for any � 9 � , � 	 � , where � is a parameter that will be set

later (and which will play the same role as the � in our decoding algorithm for Reed-Solomon codes). To do

so, we assume that we are explicitly given functions � � �������Q��� 
 F � I � such that � ��� L�� �Y��- � O�*�� � �E$%� and

such that �
��� L�� �Y��- � O ( �
��� L�� � I � �
- � O . Let � <?>'@��� 
 F �,	� . We will then look for coefficients � � a � � / such that

�.� � 
P� 
�
� / � �


 F � I � F , � /�
� a � �

� � a � / � � a � � / � (1)

By explicitly setting up � as above, we impose the constraint (ii) above. To get constraint (i) we need to

“shift” our basis. This is done exactly as before with respect to � � , however, - � 9 � and hence a different

method is required to handle it. The following lemmas show how this may be achieved.
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Lemma 20 For every � � � 9�� and -�9 � with �
���&L�� ��-PO � � ��� L+�3��-PO , there exist ! � � � � 9 
G��� � � 	 , such

that

�
���&L ! � �.� � � � �
-3O ( ����	 � �
��� L��D�
-PO�� �
��� L+�3��-PO
	 �

Proof: Let �
��� L�� ��-PO�� �
��� L+�3��-POE� � and � F � be the multiplicative inverse of � in � . Then �
���&L����
� F �B�
-POE� � and hence � ���&L�� F �B�
-3O � $ � and finally �
���&L � � � F �!��-PO � � . Let L���� � F � OQLU-3O � ! and

L+� � � F � OQL -PO � �
. By Property 3a, ! � � �9 � �H� � 	 , and since - is a rational point, ! � � 9 
 � . Thus we find

that L � � � � F � $ ! � � � F � OQLU-PO�� � . Thus �
���!L � � � � F � $ ! � � � F � ��-PO�( � and so �
��� L � �)$ ! � �
-3O ( �
as required.

Lemma 21 Given functions � � �������Q� � � of distinct orders at - � 9 � satisfying � �%9 � � I � F � � 	 � and a

rational point - � ��/- � , there exist functions � � �������Q��� � 9 � with �
���!L�� �Y�
- � OM*:�M$ � and such that there

exist ! 	�� � � a � � 
 9 
G� for � * � � � � � *�
 such that � � a � � �� 
 � � ! 	�� � � a � � 
 � � 
 .
Proof: We prove a stronger statement by induction on 
 : If � � �������Q� � � are linearly independent (over 
G� )
functions such that �
���&L�� �Y�
- � O * � for � 9�� 
H
 , then there are functions � � ������� ��� � such that �
���&L�� � �
- � O�*
� � � $ � that generate the � � ’s over 
 � . Note that this will imply our lemma as � � ��� K �������Q��� � are linearly

independent using Property 3(c) and the fact that the � � ’s have distinct pole orders at - � . W.l.o.g. assume

that � � is a function with largest order at -�� , by assumption �
��� L�� � �
-�� O * � . We let � � � � � . Now, for

RN* � * 
 , set � �� � � � if �
��� L�� � �
-�� O ( �
���&L � � �
- �'O . If �
���!L � � �
- �'OE� �
��� L�� � ��-��'O , using Lemma 20 to

the pair L�� � ��� � O of functions, we get ! �Y� � � 9 
 ��$ � � 	 such that the function � �� � ! � � � � � � � � satisfies

�
��� L�� �� ��- � O ( �
���&L�� � �
- � O�* � . Since in this case � � � � F �� � �� $ ! � � F �� � � , we conclude that in any case, for

RE*�� *�
 , � � � � � and � �� generate � � . Now � � K � � �� ������� ��� �� are linearly independent (since � � ��� K �������Q� � �
are) and �
��� L�� �� ��- � O * � $ � for RE*�� *�
 , so the inductive hypothesis applied to the functions � � K �������Q� � ��
now yields � K �������=��� � as required.

We are now ready to express condition (i) on LU-��U�����'O being a zero of order at least � . Using the above

lemma and (1), we know that �TLU- ���HO has the form

�ELU- ��� O � 
�
� / ���


 F � I ��
� 
 � �


 F � I � F � / ,�
� a � �

� � a � � / ! 	�� � � a � � 
 � � 
 � 	�� LU-3O � � / �

The shifting to � � is achieved by defining � � ��
 LU- ���HO <?>'@� �TLU- ����� � � O . The terms in � � ��
 L - ��� O that are divisible

by � � contribute 
 towards the multiplicity of LU- � � �&O as a zero of � � ��
 , or, equivalently, the multiplicity of
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LU- � ��� � O as a zero of � . We have

� � �-
 LU- ��� O � 
�
��� ���


 F �?I ��
� 
 � �

� � �-
� 
 � ��� � � 
 � 	�� LU-3O � ��� � (2)

where

� � �-
� 
 � ��� <?>�@� 
�
� / � ���


 F � I � F , � /�
� a � �



� K
� � 
 � � / F ���� � � � a � � / ! 	�� � � a � � 
 �

Since �
���!L�� � 
 � 	�� ��- � O *:$GL � � $\�BO , we can achieve our condition on LU- � ��� � O being a zero of multiplicity at

least � by insisting that � � �-
� 
 � ��� � � for all � � 2 � , � � 2 � such that � � � � � $\�E( � . Having developed the

necessary machinery, we now proceed directly to the formal specification of our algorithm.

Implicit Parameters: � ; - � �
- � �������Q��- � 9 � ; � ; � .
Assumptions: We assume that we “know” functions

� ��� a 9 � 0 � � 9\� � $ �E�`� 
 	 of distinct orders at - �
with �
��� L�� � a �
- � O * � � � � $%� , as well as functions

� � � 
 � 	�� 95� 0 � � 9 � � $ � �^�?
 ����9 ���D
 	 such that

for any � 9 �4� 
 , the functions
� � � 
 � 	�� 	 � 
 satisfy �
���&L�� � 
 � 	�� �
- � O */� $ � � . The notion of “knowledge”

is explicit in the following two objects that we assume are available to our algorithm.

1. The set
� ! 	�� � � a � � 
 9 
 �B0 � 9 ���D
 � � � � � � 9 � � $��P� �?
 	 such that for every �Q� � � , � � a � � � 
 ! 	�� � � a � � 
 � � 
 � 	�� .

This assumption is a very reasonable one since Lemma 21 essentially describes an algorithm to

compute this set given the ability to perform arithmetic in the function field � .

2. A polynomial-time algorithm to find roots (in � ) of polynomials in � � �!
 where the coefficients

(elements of � ) are specified as a formal sum of ��� a ’s. (The cases for which such algorithms

are known are described in [24, 11].)

The Algorithm:

Inputs: � , � , � � �������Q��� � 9 
 � .
Step 0: Computer parameters �B��� such that

� 	 � � and
L��D$ � OQL � $ � �\�BO

R !
� �


 � �%�
R 
 �

(Recall that ! <?>'@�5� � �T$ � .) In particular set

� <?>�@� �B�
�
R�� 	Q� ! � � 7 LUR�� 	Q� ! � O K $ �HL+� K $ �BO=L 	 K $ ! � O

R&L 	 K $ ! � O � �� <?>�@� � 	�$ �
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Step 1: Find ��� � 
 95�N� � 
 of the form ��� � 
P� � 
� / � � �

 F � I � F , � /� a � � � � a � / � � a � � / , i.e find values of the coeffi-

cients
� � � a � � / 	 such that the following conditions hold:

1. At least one � � a � � / is non-zero.

2. For every � 9 ���D
 , � � � � � � , � � 2 � , � � 2 � such that � � � � � * � ,

� � �-
� 
 � ��� <?>'@� 
�
� / � ���


 F � I � F , � /�
� a � �



� K
� � 
 � � / F ���� � � � a � � / ! 	�� � � a � � 
 �
� �

Step 2: Find all roots � 9 � � I�� F � � 	 � of the polynomial � 9 �N� � 
 . For each such � , check if �PLU- � O � � �
for at least 	 values of �E9:���D
 , and if so, include � in output list. (This step can be performed by

either completely factoring � using algorithms presented in [24], or more efficiently by using the

root-finding algorithm of [11].)

The following proposition says that the above algorithm can be implemented efficiently modulo some (rea-

sonable) assumptions.

Proposition 22 Given the ability to perform field operations in the subset � 
 � 	 � of the function field � when

elements are expressed as a formal combination of the ��� a ’s for � � 9 � � $ � � � 
 , the above algorithm reduces

the decoding problem of an �4� ���P��� 
6� algebraic geometry code (with designed distance ��� �^�.$ � $ � � � )
in time (measured in operations over � ) at most SEL�� � A!LU� $ � �6O � � � � K O to a root-finding problem over the

function field � of a univariate polynomial of degree at most � A!LU�.$�� � O with coefficients having pole order

at most � , where � �^STL�����	 � �


I � � � F � � 

 /
F � � � F � �-
 � 	
	!O .

Proof: First of all, note that the computation of all the ! 	�� � � a � � 
 ’s can be done in STLU� � K O operations over � .

The system of equations set up in Step 1 has at most � L��B$ � O=A ! �^STL�� K A!LU� $ � � O=O unknowns, and hence can

be solved in SEL�� �?A!LU�.$�� � O � O operations (over 
G� ). Also, it is clear that the degree of �:95�N��� 
 thus found

is at most L��D$ �POQA ! �`STL�� A!LU�.$ � � OQO and that all coefficients of � have at most � poles at - � and no poles

elsewhere. The claimed result now follows once we note that

� �^S � ��� 	 � � 	P� � LU� $�� �6O	 K $N� L � $�� � O � 	
	 �
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4.3 Analysis of the Algorithm

We start by looking at �.� �H
 . Recall that for any �	9 � , �.� �H
 9	� . By the condition (ii) which we imposed

on � , we have ��� � 
 9 � 
 � 	 � whenever �59 � � I � F � � 	 � .
Lemma 23 For � 9����D
 , if �59	� satisfies �PLU- � O � � � , then �
��� L �.� �H
 ��- � O *]$�� .

Proof: We have, for any such � , ��� �H
'LU-3O � �ELU- ���PL -POQO � � � �-
 LU- � �PLU-3O $�� � O ��� � �-
 LU- � �PLU-3O $ �PLU- � OQO and

using (2), this yields

��� � 
'LU-PO � 
�
��� ���


 F �?I ��
� 
 � �

� � �-
� 
 � ��� � � 
 � 	�� LU-3OQL��3LU-PO $ �PL - � OQO ��� �
Since � � �-
� 
 � ��� �
� for � � � � � * � , �
��� L�� � 
 � 	�� �
- � O *]�!$ � � , and if � � �-
 9	� is defined by � � �-
 LU-3O <?>'@� �3LU-PO
$ �3LU- � O ,
then �
��� LQL�� � �-
 O ��� �
- � O *]$ � � , we get �
��� L �.� �H
 �
- � O *]$�� as desired.

Lemma 24 If ��9 � � I�� F � � 	 � is such that �3LU- � O � � � for at least 	 values of ��9 �4� 
 and � 	 � � , then � $ �
divides ��� � 
 95�N� � 
 .

Proof: Using Lemma 23, we get � � ��� � � �
���&L ��� �H
 ��-��6O * $�� 	 ( $ � . Since ��� � 
59 � 
 � 	 � , we have

� 	 � � �
��� L ��� �H
 ��-PO ( � , implying �.� �H
 � � . Thus � is a root of ��� � 
 and hence �)$ � divides ��� �!
 .

Lemma 25 If ��� � I �K 	 ( � 
 F � 
 � 
 F � I K 
K , , then a ��� �!
 as sought in Step 1 does exist (and can be found in

polynomial time by solving a linear system).

Proof: The proof follows that of Lemma 6. The computational task in Step 1 is once again that of solving

a homogeneous linear system. A non-trivial solution exists as long as the number of unknowns exceeds

the number of constraints. The number of constraints in the linear system is � � � I �K
	 , while the number of

unknowns equals


�
� / � � L�� $ � �%�M$ ! � K O 2 L��D$ � O=L�� $ � � R&OR ! �

Lemma 26 If �����P�
	
� � satisfy 	
K � L ��� � $ � OU� , then for the choice of �B� � made in the algorithm,

� 
 F � 
 � 
 F �?I K 
K , � � � � I �K
	 and � 	 � � both hold.
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Proof: The proof parallels that of Lemma 7. The condition � 	 � � certainly holds since we pick � <?>'@� � 	 $%� .
Using � � � 	 $%� , the other constraint becomes

L � 	�$ � O K $%�
R !

� �

 �M�%�
R 


which simplifies to � K L 	 K $ ! � O $NLUR�� 	 � ! � O � �%L+� K $+�BO � ���
If 	
K $ ! � � � , it suffices to pick � to be an integer greater than the larger root of the above quadratic, and

therefore picking � <?>'@� �B� � R�� 	Q� ! � � 7 L R�� 	=� ! � O K $ � L+� K $ �BOQL 	 K $ ! � OR L 	 K $ ! � O �
suffices, and this is exactly the choice made in the algorithm.

Our main theorem now follows from Lemmas 24-26 and the runtime bound proved in Proposition 22

Theorem 27 Let � be an �4� ���P��� 
6� algebraic-geometry code over an algebraic function field � of genus �
(with � � � �5$ �)$ � �]� ), Then there exists a polynomial time list decoding algorithm for � that works

for up to 7 (\� $ 7 � LU� � �E$%�BO �^�X$ 7 � LU� $�� � O errors (provided the assumptions of the algorithm of

Section 4.2 are satisfied).

5 Concluding Remarks

We have given a polynomial time algorithm to decode up to �M$ � C errors for a rate C Reed-Solomon code

and generalized the algorithm for the broader class of Algebraic-Geometry codes. Our algorithm is able to

correct a number of errors exceeding half the minimum distance for any rate.

A natural question not addressed in our work is more efficient implementation of the decoding algo-

rithms. Extensions of the works of [23, 11] seem to be promising directions in this regard. An important

step, that of solving the associated linear equations efficiently, has already been taken by [20]. However

some important problems, such as efficient factorization algorithms for polynomials over function fields,

remain unsolved.

The list decoding problem remains an interesting question and it is not clear what the true limit is on the

number of efficiently correctable errors. Deriving better upper or lower on the number of correctable errors

remains a challenging and interesting pursuit.
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