A 220mW 1Gb/s 1024-Bit Rate-1/2 Low Density Parity Check Code Decoder
Chris Howland and Andrew Blanksby

High Speed Communications VLSI Research Department
Agere Systems
Holmdel NJ 07733
Email: {howland,blanksby } @agere.com

Abstract

A 1024 bit rate-1/2 Low Density Parity Check (LDPC) code
decoder has been implemented that matches the coding gain
of equivalent turbo codes. The parallel decoder architecture
supports throughputs up to 1Gb/s and convergence in the
decoding algorithm translates into extremely low switching
activity with power dissipation under 220mW.

Introduction

Error correcting codes are used to increase the bandwidth and
power efficiency of communications systems [1]. The inven-
tion of turbo codes and block turbo codes has moved the limit
of achievable coding gain much closer to the Shannon limit

for low and high code rates' respectively[2, 3]. However, the
iterative nature of the decoding algorithms for turbo codes and
block turbo codes present significant implementation chal-
lenges. Each pass through the data block to perform a decoder
iteration requires the fetching, computation, and storage of
large amounts of state information. Performing multiple itera-
tions to achieve high coding gain reduces throughput and
increases power dissipation [4].

The interest in iterative decoding algorithms has led to the re-
discovery of Low Density Parity Check (LDPC) codes. LDPC
codes were invented by Gallager in 1962 but were not pursued
for due to implementation complexity [5]. It has been recently
shown that LDPC codes are asymptotically superior to turbo
codes with respect to coding gain [6]. The most powerful code
currently known is a 1 million bit, rate-1/2 , LDPC code,
achieving a capacity which is only 0.13dB from the Shannon

limit for a bit error probability (BER) of 107 [6]. However,
unlike turbo and block turbo codes it is possible to decode
LDPC codes using a block-parallel algorithm instead of a
block-serial algorithm.

In this paper we present a parallel architecture for LDPC
decoders that achieves both very high throughput and
extremely low power dissipation. This architecture is demon-
strated through the implementation of a 1024 bit, rate- 12 ,
soft decision LDPC decoder.

1. The rate of a code is defined as the ratio of the information bits to the
sum of the information and parity bits. A low-rate code has a large
redundancy overhead while a high-rate code has a small overhead.

Low Density Parity Check (LDPC) Codes
Low density parity check codes are linear block codes thus the
set of all codewords, x, span the null space of a parity check
matrix H :
Hx =0)]

The parity check matrix H for LDPC codes is a sparse binary
matrix where the set row and column elements are chosen to
satisfy a desired row and column weight profile [6], and maxi-
mize the length of cycles in the graph representation of the

matrix [7, 8]. The general structure of H is shown in Fig. 1.

-4—— Ncolumns ———————p

_::%

M rows

0Jo]”

Fig. 1. General structure of a low-density parity check matrix H.

Each row of H corresponds to a parity check and a set ele-
ment (i, j) indicates that data symbol j participates in parity
check {.In ablock of N bits or symbols, there are M redun-
dant parity symbols and the code rate R is given by:

R =(N-M)/N 2)

A. Graph Representation of LDPC Codes

Low density parity check codes can also be represented using
a bipartite graph, where one set of nodes represents the parity
check constraints and the other set represents the data symbols
or variables as illustrated in Fig. 2.

M check nodes

check
message

variable
message

, N variable nodes receive T l decoded

symbol symbol

Fig. 2. Example of the bipartite graph representation for a LDPC code and
information flow in the message passing algorithm.

13-3-1

0-7803-6591-7/01/$10.00 © 2001 IEEE

1IEEE 2001 CUSTOM INTEGRATED CIRCUITS CONFERENCE

293

A variable node v ;, corresponding to column j in H , is con-
nected to check node ¢, , corresponding to row i in H , if the

entry (i, j) in H is set, i.e. non zero.

B. The Message Passing Algorithm

The message passing algorithm is an iterative algorithm for

decoding LDPC codes best understood with reference to the

graph representation of an LDPC code [5]. It can be summa-
rized as follows:

1. Initialize all variable nodes and their outgoing variable mes-
sages to the value of the corresponding received bit.

2.Propagate the variable messages from the variable nodes to
the check nodes along the edges of the graph.

3.Perform a parity check (XOR) on the incoming variable
messages at the check nodes. Form each check message as
the XOR of the incoming variable message and the parity
check result. This is the value all other connected variables
imply the variable corresponding to each edge should take.

4. Pass the check messages from the check nodes back to the
variable nodes along the edges of the graph.

5. At the variable nodes update estimates of the decoded bit
and outgoing variable messages for each edge connected to
the variable node using a weighted majority function or
summation.

6.Repeat steps 2-5 until a termination condition is met. Possi-
ble iteration termination conditions include:

 The estimated decoded block x satisfies (1).

« The current messages passed to the parity check nodes
satisfy all of the parity checks. This does not guarantee
that (1) is satisfied but is almost sufficient and is simple to
test.

* Stop decoding after a fixed number of iterations.

Both hard and soft decision forms of the message passing
algorithm are possible.

A Parallel 1024 bit, Rate 1/2 Soft Decision LDPC Decoder

A parallel architecture for the message passing algorithm can
be obtained by directly instantiating the LDPC graph in hard-
ware. As seen in Fig. 2 the computational dependencies for
any node depend only on nodes of the opposing type. There-
fore, all variable nodes and all check nodes can alternately be
updated in a block-parallel fashion supporting very high
throughput.

To demonstrate the utility of a parallel architecture for decod-
ing LDPC codes a prototype decoder was implemented for a

1024 bit, rate- 1 2 LDPC code. This data point corresponds to

one of the block size and code rates proposed for 31d genera-
tion (3G) wireless turbo codes [9]. To achieve the highest pos-
sible coding gain at low signal-to-noise ratios (SNR) the
decoder uses a soft decision version of the message passing

algorithm. The parity check matrix H for the code has an

average column weight of 3.25, with columns of weight =3, 6,
7 and 8. This corresponds to an average row weight of 6.5 and
256 weight k=6 and 256 weight k=7 parity checks were chosen
to satisfy this constraint and the code rate of 12 .

Although the coding gain of a 1024 bit, rate- 1,2 LDPC code
is theoretically inferior to that of a turbo code [6], implementa-
tion restrictions on the number of turbo code decoder itera-
tions do not enable the realization of this difference. In Fig. 3
the coding gain of the LPDC decoder is compared to the 1024
bitrate- 1 /2 turbo code in the 3G proposal decoding using the
SOVA and MAP decoding algorithms [10, 11]. The coding
performance of the LDPC code is comparable to that of the
turbo code when decoded with 6 iterations of a MAP decoder
for packet error rates (PER) lower than 1%.

10 T — T
-4 LDPC
~a—- Turbo-MAP, 6 iter
-m - Turbo-MAP, 20 iter
. -e— Turbo-SOVA, 6 iter
10 -® - Turbo-SOVA, 20 iter f
[0)
]
any
<]
= -2
m 10k 1
?
x
(3]
IS
& s
107k 7
10—4 L i L

0 0.5 1 1.5 2 25 3 3.5 4
Fig. 3. 1024-bit, rate-1/2, LDPC code (4-bit messages) and 3G wireless turbo
code using MAP and SOVA decoders (full floating point precision)’

Although the decoder was intended to be compared to 3G
turbo codes which have a throughput of 1-2Mb/s, the proto-
type was designed to achieve a maximum throughput of

1Gb/s to demonstrating the extremely high throughput capa-
bility of the parallel architecture.

A. Data Input/Output

The parallel decoder can be considered as a three block pipe-
line. While one block is being iteratively decoded, the next
block is loaded into the decoder, and the previous block is
read-out from the decoder. Data is loaded and unloaded from

the decoder using a scan chain, with a width of w samples and
depth d, such that:

w-d =N 3)
The number of decoder iterations performed on all blocks is
set to d . The columns of H , and hence the variable nodes, are

divided into w groups, each separated by w bits as shown in

I. One decoder iteration for the turbo codes is taken to mean one constitu-
ent codes trellis decoding.

13-3-2

294

Fig. 4. The decoder was implemented with w = 16 and
d = 64, performing 64 decoder iterations for every packet.

To achieve the desired throughput of 1Gb/s the required clock
frequency is only 64MHz.

Variable Variable
node j+w node j+(d-1)w
Received Value j v
(4bitg -
Variable Nodes
{with internal Decoded
_latc_hes)_> I:J__> s
- Bitj
4
Variable Variable
node j node j+2w

Fig. 4. Architecture of variable scan group j.

B. Check Node Architecture

Each check node performs a parity check across all variables
in arow of H. As'shown in Fig. 5(a) the row parity is XOR’d
with each check node input to calculate the value that all other
variables in the group imply each individual variable node
should take. Along with the parity determination, an implied
reliability of the parity in the Log-Likelihood domain is calcu-
lated as shown in Fig. 5(b). The reliability update is performed
on the log of the incoming log-likelihoods so that the calcula-
tion can be performed using additions. At the output the result
is converted back into the log-likelihood domain. This arith-
metic conversion is similar to the log-MAP implementation of
MAP decoders [11]. The approximate logarithm is performed
by a few gates of combinatorial logic. The exponentiation is
approximated as a leading zeros count.

\D_ row j parity output 0

Row Parity | bits 0.k-1

/!r /D; row] parity output k-1

row j parity input 0

L bits 0.kt ! %

row j pa'rity input -1

kinput XOR A Kby 2-input XOR
(a) Party Update row j reliability
output 0

row j eliabilty ¥ P
input 0 L
. —>
Shitreliabilies —>| K = oo =

(log domain) ? ?ggp;gxs : bits 0.‘k-'1 eggfné ?bit eabilties

! ' ' + ! ’ (log domain)
row jreliability ' —>

inpt k-1 1 sbitioglog j\

row | reliability

reliabilities output k

(b) Reliability Update
Fig. 5. Check node implementation
C. Variable Node Architecture

The architecture of the variable nodes is shown in Fig. 6. The
variable nodes contain all of the latches in the decoder, both
the scan-chain latches and decoder message latches. At the
packet start signal the decoding of a new packet is commenced

and the previous packets results are loaded into the output scan
chain. For the first decoding iteration the messages sent to the
check nodes are the signed magnitude representations of the
received value, since for a Gaussian channel the received val-
ues are the log-likelihoods. All messages passed between the
variable and check nodes are represented as a sign bit and 3
magnitude bits. For subsequent iterations, each message enter-
ing the variable node together with the received value are con-
verted to 2’s complement and summed. The sign of the sum
represents the decoders current estimate of the decoded bit at
each variable node. Outgoing messages are then formed as the
group sum minus each individual edge’s input message. This
is the value all other connected checks and the received value
imply each check should use for the next parity update. All
values are converted back to a signed magnitude representa-
tion and latched, to be used by the check nodes connected to
the variable node in the next decoder iteration. In the case that
the group sum is zero or the outgoing messages sum is zero,
the sign-bit used is that of the received bit, as this is the most
probable value for the decoded bit.

— X4 p—>
—
var node —>| Si var node
inuts —*1 outputs
orr 0.t1
' x4 |—>
4-bit sign-mag.
thy 2-input pkt_start (log domain)
subtractors
. . 4-bit received values received scan out
received scan in x4 4
| A I MSB

decoded scan in

‘[‘\[! decoded scan out

pkt_start
Fig. 6. Variable node implementation

D. Packet Error Detection

A packet error signal is derived by performing an OR opera-
tion of all row parities from the last decoder iteration, approxi-
mating a test of equation (1). The satisfaction of all parity
checks in the final iteration is not equivalent to testing the par-
ity using the final decoded bits but the difference is insignifi-
cant.

E. Physical Design

The decoder is being fabricated in a 0.16 um, 1.5V CMOS
process with 5 levels of metal. The variable and check nodes
were synthesized from a VHDL description. As discussed in
Section A the 1024 variable nodes were grouped into 16 mac-
ros, denoted vgrp0 to vgrpl5, to simplify the chip /O and
clock distribution. Macros were also created for the weight 6
and weight 7 check nodes. The main implementation chal-
lenge was the placement and routing of the macros at the top
level with more than 26000 wires of average length 3mm rep-
resenting the messages. Custom algorithms were developed to

13-3-3

295

place the macros and insert buffers to reduce the route lengths,
reduce routing congestion, and achieve timing closure. The
decoder was designed for a maximum clock frequency of
64MHz under worst case slow operating conditions. The lay-
out of the decoder is shown in Fig. 7. The chip area is 7.5mm
X 7.0mm and the utilization of 50% was limited by routing
congestion.

LLLLELELEELLL

. ,i il vgrp4 vgrps
G
=

LiTLLLLE

'.g.: g;r].

T

LRR A R

Fig. 7. Layout of the parallel 1024-bit, rate-1/2, soft decision LDPC decoder.

F. Switching Activity and Power Dissipation

It is shown in Fig. 8 that the decoder rapidly converges to a
stable solution, particularly when the input bit error rate

(BER) is low.
e SwiTcFing Activity
—— Packet Error Rate

Py
o
=]

ry
o
-

102

41078

Switching Activity (%)
Packet Error Rate

—
5
&

o . e ; i 1105

0 05 1.5 25 3
Ep/Ng (dB)
Fig. 8. Switching activity of message bits in a 1024-bit, R=172 soft decision
LDPC decoder with 4-bit messages.

Once the decoder has converged to a stable result the only
switching activity in subsequent iterations is that of the scan
chains and clock. At this time the messages between nodes
stop switching, reducing the power consumption of the
decoder. From Fig. 8 for a packet error rate (PER) of 1% the

switching activity factor is found to be only 1%, and for 100%
PER the activity factor is 9%. Together with the extracted par-
asitics, these operating points can be used to estimate the aver-
age and worst case power dissipation of the decoder
respectively. At a maximum clock frequency of 64MHz and
1Gb/s throughput the average total power dissipation of the
decoder is calculated to be 220mW with a worst case value of
500mW. However, if a throughput of only 1Mb/s is required,
e.g. 3G wireless data rate, the clock frequency is 64KHz and
the power dissipation is a miserly 220U W average and 500uW
warst case. This compares extremely favorably with 170mW
reported for a turbo decoder performing 3 iterations with a
block size of 256 bits and throughput of 1Mbit/s implemented
in 0.6m, 3.3V CMOS technology [4].

Conclusion

A parallel architecture for decoding LDPC codes has been
presented that achieves comparable coding performance to
equivalent turbo codes. The spectacular throughput and power
dissipation advantages of the parallel architecture have been
demonstrated through the implementation of a 1024 bit, rate-

1/2 LDPC decoder that achieves power dissipation of
220mW and for a throughput of 1Gb/s, and 220uW fora

throughput of 1Mb/s . The design represents a unique trade-
off of area for high throughput and low power dissipation.

References

[1] M. Bossert, Channel Coding for Telecommunications, John Wiley &
Sons, 1999.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting codes and decoding”, Proc. Int. Conf. Comm. ‘93, pp
1064-1070, May 1993.

[3] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum
decoding of product codes”, Proc. IEEE GLOBECOM ‘94, pp 339-343,
1994.

[4] S. Hong and W. Stark, “Design and implementation of a low complexity
VLSI turbo-code decoder architecture for low energy mobile wireless
communications”, J. VLSI Sig. Proc., Vol. 24, pp 43-57, 2000.

[5] R. Gallager, “Low density parity check codes”, IRE Trans. Info. Theory,
Vol. IT-8, pp 21-28, Jan. 1962.

[6] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably
good low-density parity check codes”, submitted to JEEE Trans. Inf.
Theory, March 1999.

{71 ER. Kschischang and B.J. Frey, “lterative Decoding of Compound
Codes by Probability Propagation in Graphical Models”, IEEE Journal
on Selected Areas in Communications, Vol. 16. No. 2, pp 219-30, Feb.
2000.

{8] C.J. Howland and A.J. Blanksby, “Parallel Decoding Architectures for
Low Density Parity Check Codes”, Proc. IEEE ISCAS 2001, 2001.

(91 “3™ Generation Partnership Project (3GPP); Technical Specification
Group Radio Access Network Multiplexing and channel coding
(TDD)”, available at http://Awww.3gpp.org

{10] J. Hagenauer and P. Hoeher, “ A Viterbi algorithm with soft-decision
outputs and its applications”, Proc. GLOBECOM 1989, pp 1680-1686,
1989.

[11] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate”, /EEE Trans on Inf.
Theory, pp 363-77, March 1974,

13-3-4

296

