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ABSTRACT 

In many communications problems, maximum-likelihood 
(ML) decoding reduces to finding the closest (skewed) lat- 
tice point in N-dimensions to a given point x E CN. In 
its full generality, this problem is known to he NP-complete 
and requires exponential complexity in iV. Recently, the ex- 
pected complexity of the sphere decoder, a particular algo- 
rithm that solves the ML problem exactly, has been com- 
puted where it is shown that over a wide range of rates, 
SNRs and dimensions the expected complexity is polyno- 
mial in N. In this paper, we propose an algorithm that, for 
large N ,  offers substantial computational savings over the 
sphere decoder, while maintaining performance arbitrarily 
close to ML. The method is based on statistically pruning 
the search space. Simulations are presented to show the al- 
gorithm's performance and the computational savings rela- 
tive to the sphere decoder. 

1. INTRODUCTION 

Multiple antenna systems have been shown to he capable 
of achieving high data rates. However, reliable decoding 
in these systems requires very high complexity. For a wide 
class of space-time transmission schemes (see e.g., [ I ,  21) 
ML decoding requires us to solve an Integer Least Squares 
problem, which is, in general, NP-hard. Practical meth- 
ods to solve this employ approximations or heuristics. Zero 
forcing cancellation, nulling and cancelling and nulling and 
cancelling with optimal ordering [I, 21 are some of these. 
However, the hit error rate (BER) performance of these is 
inferior to that of the exact methods. 

Exact methods that search over the entire (finite) signal- 
space require exponential search. More sophisticated exact 
methods such as Kannan's algorithm [3], the KZ algorithm 
[41 and the sphere decoding algorithm of [5 ]  attempt to re- 
duce the search space. The branch and hound algorithm, 
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popularly used to solve integer (usually linear) program- 
ming problems, imposes additional constraints on the opti- 
mizing variables to reduce the size of the problem and also 
requires estimates of upper and lower bounds of the objec- 
tive function to prune the tree. Hence it is not suitable for 
the ML decoding problem. 

lying in a hypersphere centered at x and then determine the 
point closest to x. The analysis for the expected complex- 
ity of this has been done in [6]. While this algorithm yields 
polynomial-time complexity over a wide-range of rates, di- 
mensions and SNRs, it does require a non-polynomial com- 
plexity for large N. 

In this paper, we propose a modification to the sphere 
decoding algorithm that uses statistical pruning to reduce 
the search for the closest point to a region much smaller 
than the hypersphere. This causes a reduction in complex- 
ity, at the price of increasing the BER. However, we show 
that significant computational savings can he obtained while 
keeping the BER arbitrarily close to that of the ML decoder. 

Below, we describe the system model and the original 
and modified decoding algorithms and then analyze the per- 
formance and complexity of the proposed algorithm. 

In the sphere decoding algorithm we find the lattice points 

2. SYSTEM MODEL 

We assume a discrete-time block-fading multiple antenna 
channel model with N transmit and N receive antennas, 
where the channel is known to the receiver. If S is the 
signal space, during any channel use the transmitted signal 
S E SNx'  and the received signal z E CNx'  are related by 

x = u ~ H S  + U  (1) 

where H E C N x N  is the known channel matrix and U E 
C N x l  is the additive noise vector, comprised of indepen- 
dent, identically distributed (i.i.d.) complex-Gaussian en- 
tries CN(0,l) i.e. .,' = 1. If we assume that the entries 
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'The case of nonequal number of transmitireceive antennas can also he 
derlt with in a straightforward fashion, hut is omitted for brevity. 
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of s and H have unit variance, then ah = fi where p is 
the expected signal-to-noise ratio (SNR). Under the afore- 
mentioned assumptions the ML criterion requires us to find 
s E SNX1 that minimizes 112 - Hsll'. 

3. SPHERE DECODER 

In sphere decoding we search only over lattice points that 
lie in a hypersphere of radius T around x, thus reducing the 
search space and the computation. Therefore we need to 
find all s E S N x '  that satisfy 

T2  2 112 - Ifs112 (2) 

To this end, consider the QR decomposition of the channel 
matrix, H = QR where R is an N x AT upper triangular 
matrix with positive diagonal and Q is an N x N unitary 
matrix. We then have 

/Iz - Hs1I2 = llz - QRs1I2 = IlQ'x - Rs1I2 

Define y' = Q'z - Rs and A i  = 1yk-i+112 for i = 
1,2, . . . N. Note that, due to the upper-triangularity of R, 
A; depends only on the unknowns S N , .  . . , S N - ; + ~ .  Thus 
finding all s that satisfy (2) amounts to finding all s that 
satisfy 

AI + + _ . .  + AN 5 T 2  

This is achieved by solving successively for 

x 1 + x * + . ' - + x N  5 2 (3) 

The point is that the first condition gives an interval f o r s  N, 
whereas for any pre-determined S N ,  . . . , s,+i+*. the i-th 
condition gives an interval for S N - ; + ~ .  

We see that the algorithm consmcts a search tree where 
the branches in the k-th level of the tree correspond to the 
lattice points inside the hypersphere of radius T and dimen- 
sion k .  The complexity of the algorithm depends on the size 
of the resulting search tree. 

The radius T has to he chosen carefully. If T is too large, 
we obtain too many points, but if it is too small, we get no 
points in the hypersphere and have to redo the computation 
with a larger T .  In [6],  a choice of T based on the statistics 
of the noise is suggested. This T is proportional to N. 

While the sphere decoding algorithm is one of the more 
efficient exact methods to solve the maximum likelihood 
problem with finite constellations (L-PAM, L-QAM etc.), 
it stops giving polynomial complexity at some N which is 
in the range of practical interest. The reason for this is un- 
derstood as follows - because the radius r is proportional to 

N ,  the algorithm retains a very large fraction of the lattice 
points (in fact nearly all the points) upto some dimension k 
before it starts to prune the tree. For instance, if N = 1000, 
we have T = aN such that upto dimension k = 100 we 
keep nearly all the points of the lattice. This already gives 
us L1O0 points to search over and the complexity quickly 
becomes exponential. 

4. STATISTICAL PRUNING 

Taking our cue from this, we modify the algorithm to start 
pruning the tree corresponding to the search region much 
earlier. The sphere decoder gives exponential complexity 
for large N because the first several conditions of (3) are 
very loose and do not help in reducing the search space. We 
propose instead a schedule of radii r1 5 r2 5 . . . 5 T N :  

A1 5 T f  

A1 + A 2  5 T2 
2 

A ~ + X ~ + . . . + X N  5 T A  (4) 

Denote by V r  the region in S k x l  containing points that sat- 
isfy the first k inequalities of (4). (Note that these points 
have been determined by finding out values of S N ,  S N - ~  

. . ., S N - ~ + I  that satisfy the first k conditions.) We refer to 
VN as V in the following discussion. We can determine all 
s E V by a procedure identical to that of the original sphere 
decoder. The algorithm is 

Input: Q, R, X, y = Q'x, T I , .  . . ,TN  

I .  Set k = N, 7 2  = r:, y k  = v N  
2. Set U B ( s a )  = LB(sk)  = [*I - 1 

3. sr = sa + 1. If sa 5 U B ( s k )  go to 5 ,  else go to 4. 

4. k = k + 1 and go to 3, 

5. k = k - 1. I f k  = O,goto6.  

r I ,  , /, 

7 x . i  

N Y9 = Y k  - C,=~+I r k , J s j  
Go to 2. 

6. Solution found. Save s and go to 3 

Once all s E 2, have been determined, we declare the de- 
coder output as the s E V which minimizes llx - ffsIl2. 

Note that the region D is different from the hypersphere. 
Depending on the values of T ,  , r2 , .  . . T N  it may include 
more or less points than the hypersphere of radius T .  To 
reduce the complexity, we naturally try to reduce the num- 
her of points in V. However, because of the 'asymmetry' of 
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D, it is possible that the lattice point closest to x does not 
lie in Q. Thus, unlike the sphere deoder, we are not doing 
ML decoding and are, potentially, incurring a greater BER. 

Thus we obtain a tradeoff. 

5. PROBABILITY OF ERROR 

Let i be the transmitted point and E = P(s' $ Q). With 
probability P, we make an emor by decoding to s # 1. 

P, = P,(/S E D)P(.? E D )  + Pe(lS 6 D)P(S 6 D )  

~(112 - H S / ~ *  5 /1u/I2 fors # S,S E ~ / i  E D) 

P ( / [ Z  - ~ s l l '  5 I/u)/'fors # i , s  E D,S E D )  + e  

~ ( 1 1 .  - ~ ~ 1 1 '  5 /1u112 fors # S) + c 

5 P e ( l i E D ) P ( S t D ) + l . e  
= 

P(S E D) + € 

= 

5 
= P)'L + r  

where P,"" is the probability of error with ML decoding. 
The first inequality above is very loose and hence this is 
not a very tight upper hound. Also, since we are not using 
any coding on the transmitted signal, PeML will not go to 
zero and so by making E small we can obtain performance 
arbitrarily close to ML. 

We now determine E. I f s  = 1, we have y'  = &*U. 

Since Q is unitary, Q'v has the same statistics as U i.e. i.i.d. 
entries distributed as C.u(O,l). With X i  = 1yN-i+1/2. we 
havep,,, ( X i )  = Because XI,. . . , A N  areindependent, 

pA,,Az ,.,,, A N  ( x ~ ,  A*, . . .,A,) = e-('1+'2+...+'N) 

1 - t is the probability that these X i ' s  satisfy (4). Therefore 

( X I + . . . + h N  -1) 
1 - e IT!. .Ir" e - ( h + . - . + h N l d X N , ,  .dX, 

Changing variables to pi = E;.=, Xj  fo r i  = 1,. . . , N 

If we call this integral IN and integrate out fi,v we get 

IN =  IN-^ - J N - ~  ( 5 )  

where J N - ~  = si' s2 . . . 
shown that the Ji's satisfy the recurrence 

dpN-1 . . . & I .  It can be 

We define Io = 1. Then, using (5) recursively, we get IN = 
1 - Er=, e-?; J k - l .  The J,'s are determined by defining 
Jo = 1 and using (6) recursively. We thus have 

We use this to determine the radii r l ,  , . . , rN. For example, 
if we choose a linear schedule i.e. rf = (6 log N + i )u$ we 
choose 6 such that E = 0.01 etc. 

6. COMPUTATIONAL COMPLEXITY 

To compute the complexity of the algorithm, we need to 
calculate the number of points that we search over. This 
means we need to determine how many points in S k x l  are 
also in Q, at every dimension k = 1 , .  . . , N. We then need 
to sum over all dimensions to estimate the number of points 
visited during the decoding. 

Let sk E S k x l .  sk E Qk if i t  satisfies the first k equa- 
tions of (4). Once P(s' E Qk) is determined, we can then 
sum these probabilites for all sk E Sk '' to get the expected 
number ofpoints in the search space at dimension k .  (Note 
here that at dimension k we have determined the values of 
SA', . . . , S N - ~ + ~  that satisfy the first k equations of (4).) 

For any sk, the joint distribution of XI,. . . ,Xa deter- 
mines P(sk E Qk). More specifically, 

P(sk E QP) (8) 

PAi ,..., A i ( X l > .  . . , A m w k .  . .dXI 
: - (A1+.. .+Ax-,)  

- - I.... Jar 
If u: is the variance of each entry of U (au = l), o h  

is as defined in section (2) and ci A o,2+~i: l~g,_B, , Iz  (Sa is 
the truncation of 1 corresponding to S i x '  i.e. the vector 
[ S N ,  . . . , iN-<+1]) it can he shown that 

Since the At 's  are independent we have 
k 

P A  I . . . . ,  X,(Xl , .  . . , X k )  = nPAi(Xi)  (10) 
i=1 

Substituting (9) and (10) into (S), the integral for P ( s k  E 
Qk) can be obtained exactly. However, i t  gives an expres- 
sion that is difficult to manipulate and sum over. Using some 
approximate analysis, it can be shown that 

PA ,,... / A* ( X I , .  . . : Xk)& . . . dX1 

where X, & rf and the Xi's  are obtained by solving the 
recursion 

k = l  
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X It can further be proved that so p i ,  (A,) is well approxi- 
mated by min(1, q). We have omitted the details here in 
the interests of space. 

We thus have 

The complexity is now given by 

m 

c = x ( e x p e c t e d  # of points in Z ) k )  . (fiops/point) - 
8k+32 k=l 

The above can be computed efficiently with Monte Carlo 
simulations. An exact sum also seems possible and we are 
working towards it. 

7. SIMULATIONS 

Ld - O ~ : W *  
INFl 

?o  11 1P 1 3  1a 
PNFl 

Fig. 1. Complexity Exponent and BER for N=S0 with QPSK 

e- B 1 0  1 1  12 7 3  
SNFl SNFl 

Fig. 2. Complexity Exponent and BER’for N=20 with QPSK 

Fig. (1) shows the BER and the complexity exponent 
i.e. log C/  log N for the modified decoder. We have N=50 
and QPSK signalling. Since the constellation is complex, 
it amounts to decoding a 2iV=IOO-dimensional real signal. 
We have used r: = (6 log N + i )u;  with 6 chosen to make 
E = 0.9. Fig. (I) also shows the complexity for the origi- 
nal sphere decoder. We can see that it requires nearly 50’ 
times as much computation as the modified decoder. It is ex- 
tremely computationally expensive to generate a BER plot 
with this decoder for N=50. 

In order to compare the BER, we show results for N=20 
and QPSK signalling in Fig. (2). We see that the loss in 
BER is quite insignificant and can be compensated by an 
increase in SNR of around 0.ldB. From the complexity ex- 
ponent we see that the modified decoder runs around 20°.’ 
times faster. 

S. CONCLUSIONS 

We have an algorithm that performs nearly as well as ML 
decoding and gives significant savings in the computational 
complexity. With the modified sphere decoder sub-cubic 
complexities are possible for larger values of N in wider 
ranges of SNR than before. This is with BERs arbitrarily 
close to those for ML decoding. With different schedules 
the tradeoff between performance and complexity can be 
altered. 

It will be interesting to see how this generalizes to sys- 
tems that include coding in the signalling scheme. 
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