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Abstract

We analyze a network of nodes in which pairs communicate over a shared wireless medium. We

are interested in the maximum total aggregate traffic flow possible as given by the number of users

multiplied by their data rate. Our model differs substantially from the many existing approaches in that

the channel connections in our network are entirely random: we assume that, rather than being governed

by geometry and a decay-versus-distance law, the strengths of the connections between nodes are drawn

independently from a common distribution. Such a model is appropriate for environments where the first

order effect that governs the signal strength at a receiving node is a random event (such as the existence

of an obstacle), rather than the distance from the transmitter.

We show that the aggregate traffic flow as a function of the number of nodes n is a strong function of

the channel distribution. In particular, for certain distributions the aggregate traffic flow is at least n

(log n)d

for some d > 0, which is significantly larger than the O(
√

n) results obtained for many geometric

models. Our results provide guidelines for the connectivity that is needed for large aggregate traffic. We

show how our model and distance-based models can be related in some cases.

1 Introduction

An early study of traffic flow in shared-medium wireless networks appears in the seminal work of Gupta

and Kumar [11]. They show that in a grid network of n nodes on the plane having a deterministic power
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scaling law, O(
√

n) transmitters can talk simultaneously to randomly-chosen receivers. Similar results for

networks with randomly-placed nodes can also be obtained (see, for example, [10] for a recent account).

Different models can yield somewhat different conclusions [1, 3, 5, 9, 12, 14, 15, 16, 17]; nevertheless, if we

do not permit the transmitter/receiver pairs to approach one another [6], the model of a power decay law (as

a function of distance) seems to yield a network in which the number of nodes that can talk simultaneously

grows much slower than n. We wish to study networks with a different connectivity model.

The O(
√

n) result in [11] has the following heuristic explanation. If a node wishes to transmit directly

to a randomly-chosen node (whose distance is approximately O(
√

n) away on average), it has two choices:

talk directly, or talk through a series of hops. If it tries to talk directly, the transmitter generates energy

in a circle of radius O(
√

n) around itself. However, this energy, which is seen by the intended receiver

becomes interference for the O(n) other nodes in the circle. Thus, some fraction of the entire network of n

nodes is bathed in interference; an undesirable consequence. If it decides instead to talk through hops, the

transmitting node can pass its message to a neighbor, who in turn passes it to a neighbor and so on for O(
√

n)

hops to the intended receiver. This strategy limits interference to immediate neighbors but ties up O(
√

n)

nodes in the hopping process. Although this turns out to be the best strategy, only O(
√

n) simultaneous

messages can be passed before all n nodes in the network are involved.

We change the model of the wireless medium from a model based on distance to one based on random-

ness. In multi-antenna links, a linear increase in capacity (in the minimum of the number of transmit/receive

antennas) is obtained when the channel coefficients between the transmit and receive antennas are inde-

pendent Rayleigh-distributed random variables [4, 13]. It is therefore now generally believed that a rich

scattering environment, once thought to be detrimental to point-to-point wireless communications, may ac-

tually be beneficial. We show that a similar effect may hold for the expected aggregate data traffic in a

wireless network; certain forms of randomness can be helpful.

There are several reasons why one may choose a random model over one that is based on distance.

While distance effects on signal strength are important for nodes that are very near or far from each other,

many networks are designed with minimum and maximum distances in mind. Decay laws of the form 1/rm

for a fixed m > 0 may not be relevant for networks of small physical size. Additionally, through the use of

automatic gain control, a radio often artificially mitigates distance effects unless the node is saturated (too

close) or “dropped out” (too far). Many first-order signal-strength effects in such networks are then due to

random fluctuations in the medium, such as Rayleigh and shadow fading. A distance-power model cannot

readily account for shadow fading since signal strength at the receiver is determined more by the presence
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of an obstacle blocking the path to the transmitter than by distance.

We adopt the premise that randomness can have a first-order effect on the behavior of a network. We

assume that the channels between nodes are drawn independently from an identical distribution. We allow

the distribution of the channel between nodes to be arbitrary and allow it to vary with the number of nodes n.

Our model covers environments where the the signal strength at a receiving node is governed primarily by

a random event (such as the existence of an obstacle). We believe that the study of such wireless networks

with random connections is important for three reasons: first, many real wireless networks have a substantial

and dominant random component; second, we show that such networks may have qualitatively different

traffic scaling laws than the scaling obtained in geometric models; finally, our results give insight into the

connectivity that a network should have to allow large aggregate traffic flows.

In general, any realistic model of a large network should have a model of connectivity that has a bal-

ance of randomness and distance-based effects. For example, [8] uses a “radio model” to show that in the

presence of obstructions and irregularities, channels become approximately uncorrelated with one another,

and the probability of good links between nodes that are far apart increases in wireless local area networks

(WLANs). The radio model in [8] essentially uses the same independence assumption that we do, but uses

distance to determine the probability of a connection link. We show in Section 8.1.1 how to apply our

traffic-flow conclusions to this radio model to determine a favorable distance between nodes.

1.1 Approach

We suppose that the connection strengths between the n nodes of the wireless network are drawn indepen-

dently and identically from a given arbitrary distribution. In geometric networks such as [11] a node may

communicate its message in hops to nearby neighbors so that it ultimately reaches the intended destination.

In our random model, although there is no geometric notion of a near neighbor, we can find an equivalent

of a near neighbor by introducing the notion of “good paths”, where connections stronger than a chosen

threshold β are called good. Transmissions to relays and destinations occur along only good paths. By

figuratively drawing a graph whose vertices are all the nodes in the network, yet whose edges are only the

good paths, we obtain a specific random graph model called G(n, p), where an edge between any pair of

the n nodes exists with probability p. (In our case, p is simply the probability that the connection strength

exceeds βn.) G(n, p) is a very well-studied object and we leverage some of its known properties to establish

disjoint routes between sources and their intended destinations. However since we are analyzing a wireless

network, we must also account for the effects of interference between all nodes, including those that do
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not have good connections between them. Fortunately, our use of the goodness threshold β also makes the

analysis of message-failures (due to interference and/or noise) tractable. Our analysis yields an achievable

aggregate throughput which is a function of the chosen threshold β. A judicious choice of β can maximize

this achievable throughput. To complement our achievability results, we also present on some upper bounds

on aggregate throughput that show that our results are sometimes tight.

2 Model of Transmitted and Received Signals

We assume that the wireless network has narrowband flat-fading connections whose powers are independent

and identically distributed (i.i.d.) according to an arbitrary distribution f(·). Thus, if h i,j is the connection

between nodes i and j, then the γi,j = |hi,j |2 are i.i.d. random variables with marginal distribution f(γi,j).

For maximum generality, we allow f(γ) = fn(γ) to be a function of the number of nodes n. As an example,

consider

f(γ) = (1 − p) · δ(γ) + p · δ(γ − 1) (1)

where δ(·) is the Dirac delta-function. This distribution is a simple model of a shadow-fading environment

where, for any pair of nodes, with probability p there exists a good connection between them (fading causes

no loss), and with probability 1 − p there exists an obstruction (fading causes a complete loss). In a general

network of n nodes, we may let p = pn be a function of n to represent changes in the geography or

network topology as the network increases in size. Although γ = 0 and γ = 1 are the only possibilities in

the distribution (1), we may also introduce values of γ that depend on n. Figure 1 pictorially displays an

example of wireless terminals whose connections may obey the model (1).

The behavior of such a network varies dramatically with p. At the extreme of p = 1 no paths are ever

blocked and all nodes are fully connected to each other. While this situation permits any node to readily

talk to any other node in a single hop, the overall network throughput is low because talking pairs generate

an enormous amount of interference for the remaining nodes. If many nodes try to talk simultaneously,

the overall interference is overwhelming. At the other extreme of p = 0, everyone is in a deep fade; now

interference is minimal. However, no nodes can talk at all (we assume a transmission power limit). Thus

we have competing effects as a function of p: increasing p benefits the network by improving connectivity

thus allowing for shorter hops, but hurts the network by increasing interference to other receivers. We are

led to ask: what p is optimal? What is the resulting network aggregate traffic? Is this optimal p likely to be

something we encounter naturally? If not, can we induce it artificially? We answer some of these questions
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Figure 1: Nodes are able to establish connections with each other if there is no object in their path. Equation

(1) models the presence of an object as a random event where each path has a connection of strength one

with probability p, and otherwise has a connection of strength zero.
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but, more generally, we look at how an arbitrary fn(γ) affects the traffic.

2.1 Detailed model

Let the network have n nodes labeled 1, . . . , n. Every pair of nodes {i, j} (i 6= j) is connected by a channel

that is denoted by the random variable hi,j = hj,i; there are
(

n
2

)

channel random variables. The channel

strengths, γi,j = |hi,j |2 are drawn i.i.d. according to the probability density function (pdf) fn(γ). Once

drawn, these channel variables do not change with time.

Node i wishes to transmit signal xi. We assume that xi is a complex Gaussian random process with zero

mean and unit variance. Each node is permitted a maximum power of P watts.

We incorporate interference and additive noise in our model as follows. Assume that k nodes i1, i2, . . . , ik

are simultaneously transmitting signals xi1 , xi2 , . . . , xik respectively. Then, the signal received by node

j(6= i1, . . . , ik) is given by

yj =
k
∑

t=1

√
Phit,jxit + wj (2)

where wj represents additive noise. The additive noise variables w1, . . . , wn are i.i.d., drawn from a complex

Gaussian distribution of zero mean and variance σ2 (wj ∼ CN (0, σ2)). The noise is statistically independent

of xi.

2.2 Successful communication

In equation (2), suppose that only node i1 wishes to communicate with node j and the signals xi2 , . . . , xik

are interference. Then the signal-to-interference-plus-noise ratio (SINR) for node j is given by

ρj =
Pγi1,j

σ2 + P
∑k

l=2 γil,j

We assume that transmission is successful when the SINR exceeds some threshold ρ0. If the SINR is less

than ρ0, we say that transmission is not possible.

3 Network Operation and Objective

We suppose that k nodes, denoted by s1, . . . sk, are randomly chosen as sources. For every si, a destination

node di is chosen at random, thus making k source-destination pairs. We assume that these 2k nodes are all

distinct and therefore k ≤ n/2. Source si wishes to transmit message Mi to destination di and has encoded
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it as signal xi. We wish to see how many source-destination pairs may communicate simultaneously. The

sources may talk directly to the destination nodes or may decide to communicate in hops through a series of

relay nodes.

3.1 Communicating with hops

In general, we suppose that the source-destination pair (si, di) communicates using a sequence of relay

nodes ri,1, ri,2, . . . , ri,h−1. (h = 1, 2, . . . represents the number of hops.) Define ri,0 = si and ri,h = di.

The path from si to di is then ri,0 = si, ri,1, ri,2, . . . , ri,h−1, ri,h = di. In time slot t + 1 we have nodes

r1,t, r2,t, . . . , rk,t transmitting simultaneously to nodes r1,t+1, r2,t+1, . . . , rk,t+1 respectively. We ask that

nodes r1,t+1, r2,t+1, . . . , rk,t+1 decode their respective signals x1, x2, . . . , xk and transmit them to the next

set of relay nodes in the (t + 2)th time slot, and so on. A natural condition to impose is that the relay nodes

that are receiving (or transmitting) messages in any time slot be distinct; the messages do not collide. In

addition, we ask that relay nodes not receive and transmit at the same time. We refer to these conditions

together as the property of no collisions in the rest of the paper. In general, we do not require r i,t to be

distinct from ri,t+1 for any i. This means that a relay can effectively hold on to a message in a time slot;

hence h effectively represents the maximum number of hops needed for all the source-destination pairs.

d1r1,h−1

s2 r2,1 r2,2 r2,h−1

r1,1 r1,2

d2

s1

rk,2rk,1sk rk,h−1 dk

Figure 2: Schedule of relay nodes: Source si communicates with destination di using relays ri,1, . . . , ri,h−1.

The solid lines indicate intended transmissions and the dashed lines indicate potential interference. A sched-

ule is valid if it meets the no-collision conditions that a node can receive or transmit at most one message in

any time slot and that no node can transmit and receive simultaneously.

3.2 Throughput

With the above procedure, we have k simultaneous communications occurring in h time slots. Message

Mi reaches the intended destination di successfully if it can be decoded by each relay ri,t. Assume that a
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fraction 1 − ε of messages reach their intended destinations in this way. Then, we define the throughput as

T = (1 − ε)
k

h
log(1 + ρ0), (3)

where ρ0 is the SINR threshold, and we are using the natural logarithm. Thus, log(1+ρ0) is the sustainable

throughput per user if the users do not collide. We multiply this factor by the number of non-colliding

source-destination pairs k, divide by the number of hops, and subtract the fraction of dropped messages

ε. The resulting throughput T depends on n and we sometimes add subscripts to the variables involved to

indicate this: kn, εn, ρ0,n and Tn. Typically, we force εn to go to zero as n grows. We demonstrate a scheme

for choosing the relay nodes and analyze the throughput performance of this scheme. Thus, we give an

achievability result for Tn. We now state this result.

4 Main Result

Theorem 1. Consider a network on n nodes whose edge strengths are drawn i.i.d. from a probability dis-

tribution function fn(γ). Let Fn(γ) denote the cumulative distribution function corresponding to fn(γ) and

define Qn(γ) = 1 − Fn(γ). Choose any βn such that Qn(βn) = log n+ωn

n , where ωn → ∞ as n → ∞.

Then there exists a positive constant α such that a throughput of

T = (1 − εn) αkn(βn)
log(nQn(βn))

log n
log

(

1 +
anβn

σ2

P + (kn(βn) − 1)µγ

)

(4)

is achievable for any positive an such that an ≤ 1 and any kn(βn) that satisfy the conditions:

1.

kn(βn) ≤ αn
log(nQn(βn))

log n
(5)

2.

εn ≤ a2
n

α(1 − an)2
(kn(βn) − 1)σ2

γ

(σ2

P + (kn(βn) − 1)µγ)2
log n

log(nQn(βn))
→ 0 (6)

where µγ and σ2
γ are the mean and variance of γ respectively. The SINR threshold ρ0 is given by anβn

σ2

P
+(kn(βn)−1)µγ

.

The parameter βn satisfying Qn(βn) = log n+ωn

n is the goodness threshold mentioned in Section 1.1.

By figuratively drawing an edge when γ > βn, we obtain a random graph that fits the well-studied model

G(n, p). Condition (5) is needed to obtain a non-colliding schedule in this random graph. This issue is

discussed in detail in Section 5. Once the schedule is obtained, we incorporate the effects of interference
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between non-colliding transmissions and provide an error analysis in Section 6. Condition (6) forces εn to

go to zero. In Section 7 we combine the results of Sections 5 and 6 to prove the theorem. Note that the

theorem indicates an achievable throughput and does not preclude that higher throughputs are possible.

Although not evident from the theorem statement at this time, it turns out that the optimum number

of hops h grows at most logarithmically with n. The throughput therefore depends most strongly on the

number of simultaneous transmissions kn and the SINR threshold ρ0.

The throughput expression (4) is general and accommodates an arbitrary fn(γ). The parameter kn is the

number of non-colliding simultaneous transmissions. We discuss the constant α and the parameter an later.

The joint selection of βn, kn, and an that maximizes the achievable throughput (4) is not easily expressed

in closed-form as a function of the pdf fn(γ). In general, these parameters need to be determined on a

case-by-case basis. We show how to find the necessary parameters in Section 8 where we give several

examples.

Since (4) holds for any kn satisfying (5), we may choose kn as large as possible (achieving equality in

(5)) and optimize only over an and βn. In fact, when σ2

P − µγ ≥ 0, it is possible to show that the optimum

kn is the maximum possible. We hence state a more specific achievability result.

Corollary 1. In the network of Theorem 1, if σ2

P − µγ ≥ 0 the throughput (4) is maximized by choosing kn

as large as possible.

5 Scheduling Transmissions

With a view to meeting a minimum SINR of ρ0 at every relay node at every hop, we impose the condition

that each transmitting link be stronger than some threshold βn. We require that γri,t,ri,t+1 ≥ βn, where βn

is a design parameter. We denote links that satisfy γi,j ≥ βn as good. We require the path from si to di to

use only good links.

The threshold βn is a parameter that we may choose as a compromise between quantity and quality of

the connections. By making βn large we increase the quality of the link. However, if we make it too large

we risk not being able to form an uninterrupted path of good links from the source to the destination. In this

section, we determine the relation between βn and the lengths of source-destination paths.

Define pn = P(γ ≥ βn) (for convenience, we drop the subscript n in the rest of this section). Using

our wireless communication network, we define a graph on n vertices as follows: For (distinct) vertices i

and j of the graph, draw an edge (i, j) if and only if γi,j ≥ βn in the network. Call the resulting graph
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G(n, p). The graph G(n, p) then becomes an instance of a model called G(n, p) on n vertices in which

edges are chosen independently and with probability p [2]. This graph shows the possible paths from the

various sources to the various destinations using only good links, but does not show the possible interference

encountered if these paths are used simultaneously. We examine this interference in Section 6.

Graphs taken from the model G(n, p) have many known properties. For instance, the values of p for

which the graph is connected is well-characterized. As p increases the probability that the graph is connected

goes to one. If p = log n+c+o(1)
n (where c > 0 need not be a constant) the probability of the graph being

connected is e−e−c [2]. This implies that there is a phase transition in the graph around p = log n
n . For p

less than this the probability of connectivity goes to zero rapidly and for p greater than this it goes to one

rapidly. Another property that is well-studied is the diameter. The diameter of a graph is defined as the

maximum distance between any two vertices of the graph, where the distance between two vertices is the

minimum number of edges one has to traverse to go from one to the other. Results in [2] and [18] tell us

that for p in the range of connectivity the diameter behaves like log n
log np . (It is also known that the average

distance between two nodes has the same behavior.) This tells us that a message can be transmitted from

one node to another using at most log n
log np hops. What it leaves unanswered is the question of how to establish

k such transmissions simultaneously and on non-colliding paths. In order to answer this question we invoke

a relatively recent result regarding vertex-disjoint paths.

5.1 Scheduling using vertex-disjoint paths in G(n, p)

Two paths that do not share a vertex are called vertex-disjoint. Note that any two paths that are vertex-disjoint

satisfy our “no-collisions” property; however, the reverse statement is not true. Thus, the vertex-disjoint

condition is stronger than our requirement of non-colliding paths. For a set of k (disjoint) pairs of vertices

(si, di), the question of whether there exists a set of vertex-disjoint paths connecting them is addressed in

[19]. Their result states that with high probability, for every (sufficiently random) set of k pairs (s i, di) and

k not greater than α1n
log np
log n , where α1 is a constant, there exists a set of vertex-disjoint paths. This result is

within a constant of the best one can hope to achieve since the average distance between nodes in G(n, p) is
log n
log np , and thus we can certainly have no more than n log np

log n vertex-disjoint paths. Also stated in [19] is an

algorithm that finds k paths using various random walk and flow techniques. Here we reproduce their main

result.

Theorem 2. Suppose that G = G(n, p) and p ≥ log n+ωn

n , where ωn → ∞. Then there exist two positive
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constants α1, α2 such that, with probability approaching 1, there are vertex-disjoint paths connecting si to

di for any set of pairs

F = {(si, di)|si, di ∈ {1, . . . , n}, i = 1, . . . , k}

satisfying

1. The pairs in F for i = 1, . . . , k are disjoint;

2. The total number of pairs, k = |F |, is not greater than α1n
log np
log n .

3. For every vertex v ∈ {1, . . . , n}, no more than a α2-fraction of its set of neighbors, N(v), are

prescribed endpoints, that is |N(v) ∩ (S ∪ D)| ≤ α2|N(v)|, where S = {si} and D = {di}.

Furthermore, these paths can be constructed by an explicit randomized algorithm in polynomial time.

In fact, the existence of the paths is proved by stating and analyzing a randomized algorithm that finds

them. However, we use this theorem only as an existence result to demonstrate achievable throughputs.

Some comments about their randomized algorithm can be found in Sections 6 and 10.1.

In our communication network, Condition 1 that (si, di) be disjoint pairs is already met. The second

imposes a restriction on how large k can be. Since the k source-destination pairs are chosen at random, the

third condition is also met. (In fact, the third condition is imposed in [19] to prevent someone from choosing

the (si, di) pairs in a particularly adversarial manner using knowledge of the graph structure.)

We can restate the theorem for our purposes.

Theorem 3. Suppose that G = G(n, p) and p ≥ log n+ωn

n , where ωn → ∞. Then there exists a constant

α > 0 such that, with probability approaching 1, there are vertex-disjoint paths connecting si to di for any

set of disjoint, randomly chosen source-destination pairs

F = {(si, di)|si, di ∈ {1, . . . , n}, i = 1, . . . , k}

provided k = |F | is not greater than αn log np
log n .

The constant α in this theorem is the same α required in Theorem 1. It is not explicitly specified. We

examine the lengths that these k paths can have in the following lemma.

Lemma 1. Almost all of the k = αn log np
log n vertex-disjoint paths obtainable under Theorem 3 have lengths

that grow no faster than log n
α log np .
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Proof. Suppose that some fraction of paths, say cnk where cn > 0 have average lengths of the form
log n
log np(1 + ω′

n) where ω′
n goes to infinity. Since there are n nodes in the network, we have

n ≥ cnk × log n

log np
(1 + ω′

n) = cnαn
log np

log n
× log n

log np
(1 + ω′

n) = cnαn(1 + ω′
n).

This implies that 1 ≥ αcn(1 + ω′
n) and therefore cn must go to zero. Therefore we conclude that at most

a vanishing fraction of the k paths can have lengths that grow faster than log n
log np and, asymptotically, all the

paths have lengths that grow no faster than log n
α log np .

Hence the number of hops h is (asymptotically) at most log n
α log np . We use this fact in the error analysis in

the following section.

6 Probability of Error

Consider a schedule of k ≤ αn log np
log n non-colliding paths. Theorem 3 shows that such a schedule exists.

One possible (but often impractical) way to obtain such a schedule is to use an exhaustive search that first

lists all the paths between every source-destination pair and then randomly chooses a set that satisfies the

vertex-disjoint property. Because we thereby choose a path based on vertices rather than edges, we are

assured that any edges that might exist between vertices along one path to vertices along another are i.i.d.

Bernoulli distributed with parameter p. We also conclude that the channel connections between nodes along

different paths in the network are i.i.d. with distribution fn(γ).

More generally, randomized algorithms that choose non-colliding paths without using edge information

between such paths also have the property of generating i.i.d. interference between the paths. An example

of such a randomized algorithm that avoids an exhaustive search is [19].

We now consider the probability that a particular message fails to reach its intended destination. Destina-

tion di fails to receive message Mi if the SINR falls below ρ0 at any of the h relay nodes ri,1, . . . , ri,h = di.

Denote by Et the event that relay node ri,t does have an SINR greater than ρ0. Note that the events

E1, . . . , Eh are identical. Therefore we have,

P(Mi is received successfully) = P(

h
⋂

t=1

Et) = 1−P(

h
⋃

t=1

∼ Et) ≥ 1−
h
∑

t=1

P(∼ Et) = 1−hP(∼ E1) (7)

where the inequality comes from the union bound. We now compute P(∼ E1). This is the event that node
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ri,1 has an SINR lower than ρ0

P(∼ E1) = P(ρri,1 ≤ ρ0)

= P

(

Pγsi,ri,1

σ2 + P
∑

j 6=i γsj ,ri,1

≤ ρ0

)

= P





∑

j 6=i

γsj ,ri,1 ≥ Pγsi,ri,1 − ρ0σ
2

Pρ0





≤ P





∑

j 6=i

γsj ,ri,1 ≥ Pβn − ρ0σ
2

Pρ0





= P





1

k − 1

∑

j 6=i

γsj ,ri,1 − µγ ≥ Pβn − ρ0σ
2

(k − 1)Pρ0
− µγ





≤ P





∣

∣

∣

∣

∣

∣

1

k − 1

∑

j 6=i

γsj ,ri,1 − µγ

∣

∣

∣

∣

∣

∣

≥ Pβn − ρ0σ
2

(k − 1)Pρ0
− µγ





≤ σ2
γ/(k − 1)

(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

(8)

where the first inequality is because γsi,ri,1 ≥ βn and (8) comes from the Chebyshev inequality and the

fact that the variance of 1
k−1

∑

j 6=i γsj ,ri,1 is σ2
γ/(k − 1). The second inequality requires the condition

Pβn−ρ0σ2

(k−1)Pρ0
− µγ ≥ 0, or

ρ0 ≤ βn

σ2

P + (k − 1)µγ

. (9)

This condition on ρ0 is intuitively satisfying: if we assume that k is large, then we expect the interfer-

ence term in the denominator of the SINR to be approximately (k − 1)µγ . This would imply that setting

the threshold ρ0 to less than βn

σ2

P
+(k−1)µγ

would be sufficient to ensure that most hops would exceed this

threshold.

We define εn to be the probability that the SINR threshold is not exceeded along one or more of the

hops. From (7), εn ≤ hP(∼ E1). We force hP(∼ E1) to go to zero. From Lemma 1, h is at most log n
α log np

and we have

εn ≤ hP(∼ E1) ≤
log n

α log np

σ2
γ

(k − 1)(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

(10)

and we require the right-hand side to go to zero.

We mention that the inequality (10) requires γ to have a variance that does not go to infinity. If γ has

infinite variance an alternative inequality is obtained from the Markov bound instead of the Chebyshev. The

13



result is

P(∼ E1) ≤ (k − 1)µγ · Pρ0

Pβn − ρ0σ2
.

If needed, Theorem 1 can be modified to incorporate this inequality but we omit this modification since the

Chebyshev bound is generally tighter.

7 Proof of Theorem 1

We now combine the results of Section 5 on the maximum number of non-colliding paths and Section 6

on the probability of successful transmission along these paths. We need p = P(γ ≥ βn) = Qn(βn) =

log n+ωn

n in order to do scheduling. In addition, we need:

1. To have non-colliding paths (Theorem 3)

k ≤ αn
log np

log n

2. To meet the SINR threshold (equation (10))

εn ≤ log n

α log np

σ2
γ

(k − 1)(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

→ 0

3. To apply the Chebyshev inequality (equation (9))

ρ0 ≤ βn

σ2

P + (k − 1)µγ

To satisfy the third condition above we set

ρ0 =
anβn

σ2

P + (k − 1)µγ

where 0 ≤ an ≤ 1. Substituting for this in the second condition, we get

εn ≤ a2
n

α(1 − an)2
(kn(βn) − 1)σ2

γ

(σ2

P + (kn(βn) − 1)µγ)2
log n

log(nQn(βn))
→ 0.

This and the first condition above are the only conditions on k. For any k satisfying these two conditions we

get an achievable throughput. This gives us Theorem 1.

The theorem gives an achievable throughput as a function of βn, an and kn but does not attempt to

optimize these parameters. Because εn goes to zero and h is determined by βn, to find the optimum k we

need to maximize k log(1 + ρ0) = k log(1 + anβn

σ2

P
+(k−1)µγ

) over k. In the particular case when σ2

P − µγ

is positive, the expression is non-decreasing in k (the first derivative is non-negative). Hence satisfying (5)

with equality is optimum. This proves Corollary 1.
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8 Examples and Applications

In this section we apply Theorem 1 to some particular channel distributions. Since, as in geometric models,

the throughput is often interference-limited, we find that densities that lead to significant interference per

transmitter generally underperform those that generate only a small amount of interference.

8.1 Shadow fading model

We revisit the model (1)

fn(γ) = (1 − pn)δ(γ) + pnδ(γ − 1) (11)

where δ(·) is the Dirac delta-function. This pdf models the situation where strong shadow fading is present.

The signal power is 0 in the presence of an obstruction and is 1 otherwise. We find the value of p that

maximizes the throughput. (We drop the subscript n.) A natural choice for the goodness threshold βn is 1,

which gives Q(β) = p. We need to satisfy p ≥ (log n + ωn)/n (where ωn → ∞) in order to use Theorem

1.

Note that we have µγ = p and σ2
γ = p(1 − p). Let us consider the case when p = 1. Then σ2

γ = 0

and equation (6) is always satisfied. The throughput expression becomes T = αk log(1 + an
σ2

P
+k−1

) where

an ≤ 1. By considering different possible values of the optimizing k, is easy to check that the maximum

throughput is no greater than a constant.

Let us consider the case when p is a constant other than 1. We consider three cases, k = 1, k = constant

6= 1 and k → ∞. In the first case (6) is satisfied easily but we get a constant throughput. In the second

case, to satisfy (6), an must go to zero and the throughput also goes to zero. In the third case, the throughput

becomes constant.

It remains to consider p → 0. In this case, for sufficiently large n, the condition σ2

P − µγ = σ2

P − p ≥ 0

is satisfied. Therefore, according to Corollary 1 the maximum possible k achieves maximum throughput.

Hence we consider k = αn log np
log n . Since p = log n+ωn

n , k → ∞ and we may replace k−1 by k in (6) and the

SINR threshold. Since kp also goes to infinity, (6) becomes εn ≤ a2
n

α2(1−an)2
log2 n

log2(np)
1
n → 0. Therefore an

may be any positive constant a < 1. With this, the SINR threshold becomes ρ0 = a
σ2

P
+αnp log np

log n

≈ a

αnp log np
log n

which goes to zero. Thus log(1+ρ0) ≈ ρ0 and we have k
h log(1+ρ0) = aα

p
log np
log n . This is maximized when

p is as small as possible, or p = log n+ωn

n . The result is summarized in the Corollary.

Corollary 2. Consider a network on n nodes where edge strengths are drawn i.i.d. from the distribution in
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(11). Then for large n the throughput is maximized for p = log n+ωn

n and is given by

T =

(

1 − a2

α2(1 − a)2
log2 n

log2(log n + ωn)

1

n

)

aα
log(log n + ωn)

(log n + ωn) log n
n

as n → ∞, where ωn is any function going to infinity and 0 < a < 1 and α < 1 are constants.

This throughput is almost linear in n and requires the network to be sparsely connected; with a con-

nection probability of (log n)/n, each node is connected with only approximately log n other nodes. For

example with n = 1000 nodes, we have (log n)/n = 0.0069 and each node connects on average to only

seven other nodes. Perhaps surprisingly, increasing or decreasing this connectivity has a detrimental effect.

While it is clear that it is possible for a network to be under-connected, it is apparently also possible for a

network to be over-connected. The simulations in Section 10.4 also demonstrate this effect.

8.1.1 Implications for a certain radio model

In [7, 8] a wireless connectivity model is introduced where the probability of a good link is expressed as

p(r̂) =
1

2

[

1 − erf

(

3.07
log r̂

ξ

)]

(12)

where r̂ is a (suitably normalized) distance between the transmitter and receiver and ξ is a parameter that

depends on the degree of shadow fading and the distance pathloss exponent. Usually ξ ∈ [0, 6] where large

values indicate a strong shadow component. The links between different sources or destinations are modeled

as statistically independent.

For nodes approximately r̂ from each other, the model (12) is equivalent to our model of shadow fading

(11) with p = p(r̂). As we show in Section 8.1, maximum throughput is attained for p ≈ (log n)/n. The

“equivalent distance” for nodes is found by solving

p =
log n

n
=

1

2

[

1 − erf

(

3.07
log r̂

ξ

)]

. (13)

for r̂. Nodes approximately this distance from each other then have the excellent throughput promised in

Corollary 2. Because we cannot have a large network of nodes exactly equidistant from each other, equation

(13) only has operational meaning if the link probability is relatively insensitive to the distance r̂ when

p ≈ (log n)/n. We show that it is.

As the number of nodes n increases, the optimum link-probability (log n)/n decreases, or, equivalently,

the distance r̂ between nodes increases. For large r̂, we may approximate 1
2(1−erf x) ≈ 1/(2

√
πx) exp(−x2),

16



and thus (13) becomes

p =
log n

n
=

ξ

10.88 log r̂
e−3.07 log2 r̂/ξ .

The sensitivity of p as a function of r̂ is very low when p is small. We show this in Figure 3, where we

display p versus r̂ for various values of ξ. The dotted lines in the figure shows the approximate optimum

operating point p for networks with 100 and 1000 nodes. We see that the optimum p is generally very small

and relatively insensitive to r̂, and the best network performance is generally therefore obtained when the

nodes are relatively far apart from one another, with a wide range of acceptable distances. This suggests that

a large high-throughput network of nodes with optimum (small) p is possible.
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Figure 3: Link probability p versus distance r̂ as given by (13) for ξ = 2, 3, 4. Also shown are dotted lines at

p = (log 100)/100 ≈ 0.046 and p = (log 1000)/1000 ≈ 0.0069 indicating the optimum throughput point

for shadow-fading with 100 and 1000 nodes respectively. As a function of r̂, p is relatively insensitive for

large r̂.

We comment that the authors in [8] also consider how shadow fading can reduce the hop-count in a

network and they use some graph-theoretic concepts in their arguments. They do not, however, attempt to

obtain a throughput result by finding simultaneous non-colliding paths, nor do they incorporate the detri-

mental effects of interference to show that a network can be “too connected”.
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8.2 An exponential density

Let fn(γ) = e−γ . For this pdf, the mean and variance are constant, independent of n. We consider the three

cases, k = 1, k = constant 6= 1 and k → ∞. In the first case, (6) is satisfied and an can be any positive

constant a < 1; in the second case we need an → 0 to satisfy (6). However, in either case, since we have

Qn(βn) = e−βn = log n+ωn

n , we have βn ≤ log n. Also, simply using the fact that Qn(βn) ≤ 1 for the

optimum βn, we get that the throughput T ≤ αk log(1 + an log n
σ2

P
+(k−1)

).

We may compare the results of [22], where a multi-antenna broadcast channel with M transmit antennas

to n users (each with N receive antennas) is studied. For M growing slower than log n (in particular, for

constant M ) the throughput scales as M log log nN . This double-logarithmic growth in n is very similar to

the achievable throughput obtained above where k plays the role of the number of antennas M .

Let us consider the case when k → ∞. We replace k − 1 by k in the throughput expression of (4),

the condition of (6) and the SINR threshold. With this, (4) becomes an increasing function of k and hence

the maximum permissible k becomes optimal. Therefore we have k = αn log ne−βn

log n . This value of k also

satisfies (6) with constant an. We obtain the optimum ρ0 = aβ
σ2

P
+αn

log(ne−β)
log n

and εn = a2

α2(1−a)2
log2 n

n log2(ne−β)

which goes to zero because β ≤ log n. This gives us a throughput of

T = (1 − εn)α2n
log2(ne−β)

log2 n
log



1 +
aβ

σ2

P + αn log(ne−β)
log n



 .

Ignoring the εn term, we find the β that maximizes this expression. Since β ≤ log n, ρ0 goes to zero and

we can approximate log(1 + ρ0) ≈ ρ0. Hence, we have to maximize log2(ne−β)

log2 n
aβ

σ2

P
+αn

log(ne−β)
log n

over β. The

term σ2/P is negligible compared with the remaining term in the denominator (which goes to infinity) and

therefore this expression becomes α log(ne−β)
log n

aβ
n , and the maximizing β is log n/2. We note that p = 1√

n
, the

number of hops is 2, and εn becomes a2

α2(1−a)2
4
n . The throughput becomes T =

(

1 − a2

α2(1−a)2
4
n

)

aα log n
4 .

For large n this throughput is larger than the throughput T = αk log(1 + an
σ2

P
+k−1

) obtained for constant k.

(For small n the latter throughput may sometimes be larger.)

Corollary 3. Consider a network on n nodes where edge strengths are drawn i.i.d. from a distribution

fn(γ) = e−γ . Then a throughput of

T =

(

1 − a2

α2(1 − a)2
4

n

)

aα log n

4

is achievable as n → ∞ where α < 1, a < 1 are constants.
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We see that a random network dominated by an exponential pdf has a throughput that scales only log-

arithmically with n. This network has good connectivity since the number of hops is small, but is also

unfortunately dominated by interference. Thus, only few transmissions can occur simultaneously. We show

in Section 9 that this throughput is tight to first-order in n.

8.3 Density obtained from a decay law

In this example we construct a pdf from the marginal density of the channel strengths in a geometric model.

For every node, the channel coefficients to the remaining nodes follow a deterministic law based on distance.

If we group these coefficients according to their magnitude γ, we obtain a certain number of coefficients

whose magnitude falls in the interval (γ, γ + dγ). We seek a probability density function whose average

number of magnitudes matches this deterministic law.

In an actual geometric model the distribution of channel magnitudes depends on the location of the

nodes. We make a simplifying assumption: We suppose that the nodes are in a circular disk and consider

the node at the center of the disk to derive the density. We thereby ignore the effects of the disk boundary.

We assume the nodes are dropped with density ∆ (nodes per unit area) but ensuring a minimum distance of

d from the center. The area of the entire disk is n/∆.

In deriving the density of the channel coefficients, we use a power law of the form g(r), where a node

transmitting with power P is received by another node at distance r with power Pg(r). We assume that

g(·) is monotonically decreasing. The most significant difference between our model and the standard

geometric model is in the independence of the channel coefficients in our model that does not exist in

the geometric model. The geometric model has a correlation structure in the coefficients where channels

of similar strength are clustered in rings around the center node. In our model, coefficients of similar

strength, although the same in number as the geometric model, are distributed randomly and not necessarily

geometrically colocated.

Consider a node at the center of the disk transmitting at power P . The fraction of nodes receiving power

≤ γP is given by 1 − ∆
n 2π((g−1(γ))2 − d2) where γ ∈ [g(

√

n
2π∆ + d2), g(d)] In particular, if we have a

decay law of the form g(r) = 1
rm , this tells us that the fraction of nodes receiving power ≤ γP is given by

1 − ∆

n
2π(

1

γ2/m
− d2)

for γ ∈ [
(

2π∆
n+2π∆d2

)m/2
, 1

dm ].
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This is a cumulative distribution function and by differentiating it with respect to γ we obtain the pdf for

the edge strengths seen by the central node as

fn(γ) =
4π∆

nm

1

γ1+ 2
m

, γ ∈
[

(

2π∆

n + 2π∆d2

)m/2

,
1

dm

]

, m > 0. (14)

We assume that connections are drawn i.i.d. from this distribution.

We apply our results to this network. We have Qn(βn) = ∆
n 2π( 1

β
2/m
n

− d2). Since we need Qn(βn) =

pn = log n+ωn

n , we have βn ≤ (d2 + log n+ωn

2π∆ )−m/2 ≈ (2π∆/(log n + ωn))m/2. For different values of m,

the mean and variance of γ can be evaluated. For large n, these are:

µγ =



























2(2π∆)m/2

2−m n−m/2 m < 2

2π∆ log n
n m = 2

4π∆
(m−2)dm−2

1
n m > 2.

(15)

σ2
γ =



























(2π∆)m( 1
1−m − 4

(2−m)2
) n−m m < 1

2π∆ log n
n m = 1

2π∆
(m−1)d2(m−1)

1
n m > 1.

(16)

Since the mean goes to zero in each case, the condition σ2

P − µγ ≥ 0 is met for sufficiently large n.

Therefore we can use Corollary 1. It turns out that, in each case, the optimum βn makes pn as small as

possible, which is βn = (2π∆/(ωn + log n))m/2. Values of εn and the throughput can be calculated for

each of these cases. We omit the details and simply state these results in the following corollary.

Corollary 4. Consider a network on n nodes where edge strengths are drawn i.i.d. from the distribution

fn(γ) =
4π∆

nm

1

γ1+ 2
m

, γ ∈
[

(

2π∆

n + 2π∆d2

)m/2

,
1

dm

]

, m > 0

Then the following values of εn and throughputs are achievable:

εn ≤























































a2

α2(1−a)2
( (2−m)2

4(1−m) − 1) log2 n
log2(log n+ωn)

1
n m < 1

a2

4(1−a)2
log3 n

log2(log n+ωn)
1

α2n
m = 1

a2(2π∆)1−m(2−m)2

4(1−a)2(m−1)d2(m−1)
log2 n

log2(log n+ωn)
1

α2n2−m 1 < m < 2

a2

2π∆(1−a)2d2
1

α2 log2(log n+ωn)
m = 2

1
w2

n

2π∆P 2

(m−1)d2(m−1)ασ4 m > 2.

(17)
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T =























































(1 − εn)a(2−m)α
2

log(log n+ωn)

log n(log n+ωn)m/2 nm/2 m < 1

(1 − εn)aα
2

log(log n+ωn)

log n(log n+ωn)1/2 n1/2 m = 1

(1 − εn)a(2−m)α
2

log(log n+ωn)

log n(log n+ωn)m/2 nm/2 1 < m < 2

(1 − εn)aα log(log n+ωn)

log2 n(log n+ωn)
n m = 2

(1 − εn)Pα2(2π∆)m/2

σ2wn

log2(log n+ωn)

log2 n(log n+ωn)m/2 n m > 2.

(18)

where a < 1 and α < 1 are constants and ωn and wn are functions going to infinity.

We see that almost linear throughput can be obtained for m ≥ 2. This differs substantially from the

O(
√

n) results obtained for the structured deterministic model with the same decay law. Our results show

that it is not the marginal distribution of the power that impedes the throughput in a geometric power-decay

network, but rather the spatial distribution of these powers.

8.4 A heavy tail distribution

Consider a network on n nodes where edge strengths are drawn i.i.d. from fn(γ) = c
1+γ4 , γ ≥ 0 where c is

such that fn(γ) integrates to 1. Clearly, the mean and variance of this distribution are constant with respect

to n. We consider the three cases k = 1, k = constant 6= 1 and k → ∞. In the first case (6) is satisfied

easily and we can set an to any positive constant a < 1; in the second we need an → 0. In either case,

the optimum β behaves like n1/6 which gives p = 3c
n1/2 and a throughput of α

2 k log(1 + ann1/6

σ2

P
+(k−1)µγ

). For

k → ∞, we replace k − 1 with k in (6), (5) and (4). With this, one can determine that the optimum βn

maximizes βn

h or βn log(nQn(βn)) while still satisfying Qn(βn) = pn = log n+ωn

n . The smallest value of

pn turns out to be optimal, leading to βn = n1/3

(log n+ωn)1/3
c1/3

31/3 . We have the following corollary.

Corollary 5. Consider a network on n nodes where edge strengths are drawn i.i.d. from the distribution

fn(γ) = c
1+γ4 , γ ≥ 0. The throughput is then

T =

(

1 −
a2σ2

γ

α2µ2
γ(1 − a)2

log2 n

log2(log n + ωn)

1

n

)

a(c/3)1/3α

µγ

log(log n + ωn)

log n(log n + ωn)1/3
n1/3

≈ a(c/3)1/3α

µγ

log log n

log4/3 n
n1/3.

8.5 A distribution with constant mean and variance

The throughput of the previous example as well as that of the exponential density of Section 8.2 can be

derived from the general case where fn(γ) has constant mean and variance as a function of n. Consider the
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cases k = 1, k = constant 6= 1 and k → ∞. When k = 1 (6) is satisfied and we may choose an to be any

positive constant a < 1. In the second case, to satisfy (6) we need an → 0. In either case, the optimum βn

is found by maximizing T = log nQn(βn)
log n log(1 + anPβn

σ2 ) subject to the condition pn = Qn(βn) ≥ log n+ωn

n

where an ≤ 1.

In the third case k → ∞ condition (6) is always satisfied for constant an and the optimum ρ0 = aβn
σ2

P
+kµγ

goes to zero. We have log(1 + ρ0) ≈ ρ0 ≈ aβn

kµγ
. Now, T = k

h log(1 + ρ0) ≈ a
µγ

βn

h = aα
µγ

βn log(nQn(βn))
log n .

Therefore, to maximize the throughput, we need to maximize log(nQn(βn))
log n

aαβn

µγ
subject to the condition that

pn = Qn(βn) ≥ log n+ωn

n .

Comparing the two objective functions using log(1 + x) ≤ x, we may always choose the case where

k → ∞ to get the larger throughput (for large n). This gives us εn ≤ a2σ2
γ

α2(1−a)2µ2
γ

log2 n
log2(nQn(βn))

1
n . (Here

k − 1 has been replaced by k.) This result mirrors the derivations used in the exponential and heavy tail

distributions. We comment that although we obtain the best throughput by letting k → ∞ as n → ∞, for

small n a small k may give a numerically higher throughput than a large one.

Corollary 6. Consider a network on n nodes where edge strengths are drawn i.i.d. from a distribution

fn(γ) where the mean µγ and variance σ2
γ of γ are independent of n. Then the throughput is given by

T =

(

1 −
a2σ2

γ

α2(1 − a)2µ2
γ

log2 n

log2(nQn(βn))

1

n

)

aα

µγ

βn log(nQn(βn))

log n

and the optimum βn maximizes βn log(nQn(βn)) while satisfying Qn(βn) ≥ log n+ωn

n .

Perhaps surprisingly, distributions with constant mean and variance, while allowing us to apply Corol-

lary 6, can have widely different throughputs. For example, both the exponential and heavy tail distributions

examined earlier have constant mean and variance but the throughput in the exponential is logarithmic in n

while the throughput in the heavy-tail is roughly n1/3.

8.6 Tradeoff between k and ρ0

In most of the examples above we notice that the optimum k goes to infinity; hence the optimum ρ0 =

aβn
σ2

P
+(k−1)µγ

goes to zero. In these cases we approximate log(1 + ρ0) by ρ0. In addition, if kµγ goes to

infinity, we can further approximate ρ0 as aβn

kµγ
. In this case, we have k

h log(1 + ρ0) ≈ aβn

hµγ
. This expression

depends only on βn and is independent of k and ρ0. We can therefore increase (decrease) k, thus decreasing

(increasing) ρ0 = aβn
σ2

P
+(k−1)µγ

and (as long as kµγ → ∞) the throughput remains unaffected. Hence it is
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sometimes possible to trade off the number of simultaneously communicating source-destination pairs with

the SINRs at which they communicate without affecting the aggregate throughput.

9 Upperbounds

Our method of finding the throughput relies on finding good edges along which the desired communication

can take place. This method does not preclude other methods from possibly doing better. In the cases where

the throughput is of the form n
logd n

the optimal throughput cannot be better by more than the factor logd n

because the maximum throughput cannot scale more than linearly (unless the channel density is somehow

chosen such that the maximum received power increases as the number of nodes increases – we exclude

such densities here).

However, when the throughput we compute turns out to be of the order of nd for d < 1, or log n as with

the exponential density, it is not clear that we cannot do better. In this section we present an approach to

computing an upperbound on throughput that shows that we sometimes cannot do better.

The throughput is given by (1− ε) k
h log(1+ ρ0). We ignore the h in the denominator and find an upper-

bound for k log(1+ρ0). Thus, we allow ourselves to choose k source-destination pairs from a given network

and find the highest SINR threshold that can be met for all of them simultaneously. This is equivalent to

finding a bound for the best single hop communication. Clearly, by doing this, our achievability results are

certain to be at least a factor of h away from the upperbound. However, we know that h can be no larger

than log n
log(log n+ωn) , which is often a small factor.

There are
(n
k

)(n−k
k

)

k! ways of choosing k source-destination pairs in a network. Assume that a threshold

ρ0 is fixed. Then, for a randomly drawn set of source-destination pairs, there is a probability, say ps, that

a received message satisfies the SINR threshold and is decoded successfully. The probability that all k

received messages satisfy the threshold is pk
s . Therefore, for a given pair (k, ρ0), the expected number of

sets of k source-destination pairs that satisfy the threshold ρ0 is

Mn(k, ρ0) =

(

n

k

)(

n − k

k

)

k!pk
s .

Note that ps depends on ρ0, k and the pdf fn(γ) from which the connections are drawn. We say that a

(k, ρ0) pair is feasible if there exists at least one set of k source-destination pairs such that each of the k

SINRs exceeds ρ0. The probability that a particular (k, ρ0) pair is feasible can be bounded as follows.
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P((k, ρ0) is feasible) = P(# of k-pairs that satisfy the threshold ρ0 is ≥ 1)

≤ E(# k-pairs that satisfy the threshold ρ0)

= Mn(k, ρ0)

where the Markov inequality is used.

If for a particular choice of (k, ρ0) we have Mn(k, ρ0) going to zero then that choice is infeasible.

Otherwise (k, ρ0) may be feasible. We can thereby characterize all (k, ρ0) pairs that may be feasible. The

largest value of k log(1 + ρ0) taken over these pairs gives us an upperbound on the throughput.

Note that this approach is general and can be used for any pdf, but requires a calculation of

ps = P

(

Pγ1

σ2 + P
∑k

i=2 γi

≥ ρ0

)

.

where all the channel coefficients in the SINR expression are drawn i.i.d. according to fn(γ). For certain

densities, such as the exponential, we may compute ps and get an upperbound as follows.

If fn(γ) = e−γ , then

ps = P

(

Pγ1

σ2 + P
∑k

i=2 γi

≥ ρ0

)

=
e−

σ2

P
ρ0

(1 + ρ0)k−1
.

With this,

Mn(k, ρ0) =

(

n

k

)(

n − k

k

)

k!
e−

σ2

P
kρ0

(1 + ρ0)k(k−1)
.

We now want to characterize (k, ρ0) pairs for which Mn(k, ρ0) does not go to zero. We have

Mn(k, ρ0) =
n!

(n − 2k)!k!
pk

s ≤ n!

(n − 2k)!
pk

s ≤ n2k e−
σ2

P
kρ0

(1 + ρ0)k(k−1)
≤
(

n2 1

(1 + ρ0)k

)k

= ek(2 log n−k log(1+ρ0)).

If k goes to infinity (with n) and 2 log n− k log(1+ ρ0) is negative then Mn(k, ρ0) goes to zero. Therefore,

for k going to infinity, we have k log(1 + ρ0) ≤ 2 log n as a bound on the throughput. If k is constant, it

is easy to see that 1 + ρ0 cannot grow faster than n2, hence the throughput is again limited by k log n2 =

2k log n where k is now a constant. Thus we have shown an upperbound of c log n on the throughput.

This happens to coincide (to within a constant) with the throughput obtained in our achievability result

(Section 8.2). In our scheme it turns out that using two hops is optimal for any n. Hence, although the

upperbound derived here is on k log(1 + ρ0), it matches the achievability result for k
h log(1 + ρ0) very

closely.
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10 Discussions, Simulations and Conclusions

Theorem 1 gives a very specific achievability result but equation (4) involves a constant α that is not explicit.

This constant has its origins in Theorem 3 where the number of vertex-disjoint paths is computed. When we

are confronted with a specific network with a finite number of nodes n, we would like an explicit estimate of

the number of non-colliding paths. In this section we provide such an estimate; we also briefly introduce the

notion of “bad” edges, discuss decentralized algorithms for attaining our achievability results, and provide

computer simulations of some of the networks analyzed in Section 8.

10.1 Non-colliding paths

In section 5 we use a result of [19] to establish the existence of non-colliding paths. In this section, we

present a constructive method of obtaining these paths and analyze the expected number of non-colliding

paths thereby obtained. The algorithm we present is used extensively in Section 10.4.

We begin by choosing nodes 1, . . . , n/2 as source nodes and nodes n/2 + 1, . . . , n as their respective

destination nodes. For the first source-destination pair, a shortest path connecting them (using only links

that exceed β) is found. This is done using a standard breadth-first search algorithm [20] in which a rooted

tree is constructed. All of the nodes begin by being “undiscovered”. The source node acts as the root of

the tree (at depth zero) and is labeled as “discovered”. We then find all the nodes that are its neighbors and

call them discovered. These are at distance one from the source and hence at depth one in the breadth-first

search tree. The nodes at depth one are then processed successively. All of the neighbors of each node

that are still undiscovered are put in the tree at depth two and their labels are changed to discovered. The

process continues till there are no undiscovered nodes. Clearly, each node appears at most once in the tree.

A shortest path from the source (root) to the destination is obtained by simply finding that node in the tree

and moving up the tree to the source node. If the destination does not appear in the tree it has no path to the

source.

Once the shortest path for the ith source-destination pair is established it is recorded and all n nodes

are relabeled as “undiscovered”; the entire process is repeated to find the shortest path for the (i + 1)st

source-destination pair. This is done till paths are found for all n/2 pairs.

We then eliminate colliding paths on this list, starting with the first source-destination pair. If a node

used on the path between s1 and d1 collides with a node on some other path, we eliminate path 1, otherwise

we keep it. We proceed in order and eliminate the ith path if it collides with any of paths i+1, i+2, . . . , n/2
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and keep it otherwise. Note that since we start with shortest paths, a relay never appears more than once on

a particular path.

Let us bound the probability that paths i and j collide for i 6= j. Without loss of generality we can set

i = 1 and j = 2. We now have

P(path 1 collides with path 2)

= P



(s1 = r2,1) ∪
h−1
⋃

j=1

(r1,j = r2,j−1 ∪ r1,j = r2,j ∪ r1,j = r2,j+1) ∪ (d1 = r2,h−1)





≤ P(s1 = r2,1) +

h−1
∑

j=1

P(r1,j = r2,j−1) +

h−1
∑

j=1

P(r1,j = r2,j) +

h−1
∑

j=1

P(r1,j = r2,j+1) + P(d1 = r2,h−1)

=
3h − 1

n − 2
(19)

The inequality is a standard union bound and the last equality is because the h−1 relay nodes on the ith path

are drawn uniformly at random from from the set of all nodes of the graph (excluding si and di). (We assume

that the algorithm that chooses the shortest path for (si, di) does not use any knowledge of the previously

chosen i − 1 paths.)

Denote by Di the event of keeping the ith path. This event comprises the intersection of the events that

the ith path does not collide with the (i + 1)st through (n/2)th paths. These n/2 − i events are identical

although they are not necessarily independent. However, for the purposes of an approximation we may

assume they are independent and compute P(Di) as follows.

P(Di) ≈
n/2
∏

j=i+1

P(paths i and j do not collide)

= (P(paths i and i + 1 do not collide))n/2−i

= (1 − P(paths i and i + 1 collide))n/2−i

= (1 − P(paths 1 and 2 collide))n/2−i

≥
(

1 − 3h − 1

n − 2

)n/2−i

The inequality is a consequence of (19). We expect the inequality to be an approximate equality when h is
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small. The expected number of successful paths is then

Expected # non-colliding =

n/2
∑

i=1

P(Di)

≈
n/2
∑

i=1

(

1 − 3h − 1

n − 2

)n/2−i

=
n − 2

3h − 1

(

1 −
(

1 − 3h − 1

n − 2

)n/2
)

(20)

≈ n − 2

3h − 1
(21)

because (1 − x/n)n/2 ≈ e−x/2 decreases rapidly with x. This calculation, although based on an incorrect

independence assumption is often useful to get an estimate of the number of non-colliding paths that we can

expect to find.
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Figure 4: Number of computer-found non-colliding paths versus n for a shadow-fading model with connec-

tion probability 2(log n)/n (solid curve) versus n. Also shown are the approximation (20) (dashed curve

closest to solid curve) and the approximation (21) (next-closest dashed curve) using values of h obtained in

the computer simulation. The dash-dotted curve is (20) computed using h = log(n)/ log(np).

We observe that in [19] vertex-disjoint paths are found successively and the nodes that are used in

paths for source-destination pairs 1, . . . , i are eliminated entirely from the graph before finding the path
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for the (i + 1)st pair. The paper adroitly proves that at each stage the remaining graph has edges that are

“approximately” i.i.d. (from the appropriate distribution). The approximation we use above deals with the

loss of the i.i.d. property by simply ignoring it. Figure 4 shows that the approximations (20) and (21)

can be very accurate. The figure shows the number of computer-found non-colliding paths obtained in the

shadow-fading model in Section 8.1 with link probability p = 2(log n)/n. (We provide more details about

this simulation in Section 10.4.) The most accurate approximation is obtained when the number of hops h

in (20) and (21) is also taken from the simulation. However, we may always approximate the number of

hops before the simulation as h = log(n)/ log(np). This final approximation is presented as the dash-dotted

curve.

10.2 Exploiting “bad” edges to reduce interference

We use good links to establish communication paths between sources and destinations. It is similarly tempt-

ing to introduce a concept of weak or bad links between such paths to minimize interference. Suppose

we classify as bad all links where the channel coefficients are below some threshold ηn. Those that have

channel coefficients above the threshold βn are still called good. We now wish to find non-colliding source-

destination paths such that at each hop the interfering links are all bad and the communication links are all

good. This is a significantly more challenging design problem than the one involving only good links for

communication because every source-destination pair generates interference for the remaining n − 2 nodes

in the network. However, we can potentially achieve higher SINRs with this approach, especially if the

network has many poor connections.

10.3 Decentralized algorithm for finding non-colliding paths

Typically we would like the sources and destinations to find non-colliding paths (or the schedule) without the

help of a central all-knowing being. While we expect every node to know its immediate local neighborhood,

we do not expect it to know the topology of the entire network. We briefly suggest how a decentralized

algorithm requiring only local information would work.

We assume that the threshold βn is known to each node. Hence, each node knows which of its connec-

tions are good. Any decentralized algorithm can can therefore operate directly on the derived graph G(n, p)

of connections that exceed βn. Decentralized shortest path algorithms in G(n, p) are well known [21]. We

propose a scheme in which source-destination pairs use such an algorithm to avoid collisions. Assume that

the first source finds a shortest path to its destination. It then broadcasts its path to the entire network (this
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generally involves transmitting the information about no more than log n nodes). Then the second source

finds its shortest path to its destination while avoiding the nodes that were used in the first path. Thus, the

second node works on a smaller graph than the first. This process repeats until all k source-destination pairs

are satisfied. While this algorithm does not require centralized knowledge, it requires some cooperation

between nodes.

The analysis of this scheme involves estimating h, the lengths of paths found and k the number of

source-destination pairs that can be supported. This is generally difficult since specific nodes are constantly

being removed from the graph and the remaining graph no longer has the same properties as the original

graph. However, the techniques used in [19] assure us that as long as the remaining graph is large enough

(n/2 nodes remain, say) there is still enough randomness in the remaining graph to ensure that shortest paths

should not exceed the diameter of the original graph.

10.4 Simulations

We revisit some of the examples analyzed in Section 8 to see how well our analytical predictions match

computer-generated simulations. We begin with the shadow-fading network analyzed in Section 8.1.

Figure 5 shows the aggregate throughput and minimum SINR of a shadow-fading network as a function

of the number of nodes n in a computer-generated simulation where the channel connections are chosen as

in Section 8.1. The analytical results suggest that for best throughput we should choose p = (log n+ωn)/n

for ωn going to infinity arbitrarily slowly. We therefore choose p = 2(log n)/n. The computer simulation

begins by establishing a network of n connections whose channels are drawn i.i.d. according to (11). Non-

colliding paths (using the method described in Section 10.1) are established and the minimum SINR obtained

along the ith path, denoted ρ0,i, is found. The quantity log(1 + ρ0,i) is then computed, weighted by the

number of hops on path i, summed over i, and then normalized by the total number of hops contained in all

paths. This gives a measure of the throughput per path, where paths that are longer (have more hops) count

more heavily in the average. This throughput-per-path is then multiplied by the number of non-colliding

paths and divided by the average number of hops to provide the aggregate throughput. The resulting curve

appears in Figure 5 as an increasing function of n and whose y-axis is labeled on the left. The minimum

SINRs obtained along the ith path ρ0,i are averaged over i and displayed as the decreasing curve whose

y-axis is labeled on the right. As predicted in Section 8.1, the aggregate throughput grows nearly linearly.

The figure shows that the average SINR per path, although decreasing with n, seems to be flattening for

large n; Section 8.1 shows that the SINR should asymptotically become constant.
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The following applies to all simulations described in this section: (i) Computer simulations were re-

peated and averaged approximately 100–200 times, depending on the size of the network and variability of

the results; (ii) The nodes have unit transmit power P = 1 and noise variance σ2 = 0.1. Hence, on a unit

channel and in the absence of interference, the SNR is 10dB; (iii) We do not prescribe an SINR threshold.

Rather, we accept any non-colliding path and use its resulting SINR in our averages. We believe this to

be reasonable in practice. The threshold ρ0 has the analytical merit that it guarantees a certain throughput;

(iv) The figures often show two plots; the aggregate throughput generally given by an increasing function

of n and whose scale is on the left y-axis, and the average minimum SINR generally given by a decreasing

function of n and whose scale is on the right y-axis; (v) Although the analysis in the paper uses logarithms

with base e, the throughputs in the figures are given in bits/channel-use.
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Figure 5: Aggregate throughput and minimum SINR versus number of nodes n in a shadow fading network

with connection probability p = 2(log n)/n. The left y-axis contains the scale for this increasing function

of n. We see that the aggregate throughput increases nearly linearly. The average SINR obtained along

the paths (see scale on the right y-axis) drops with n, and according to the results in Section 8.1 should

asymptotically go to zero as 1/ log log n.

Figure 6 shows the aggregate throughput and minimum SINR of the same shadow-fading network, this

time as a function of p for a fixed n = 1000 nodes. We see from the figure that the maximum throughput

is attained when p ≈ 0.008. Section 8.1 predicts that the maximum throughput is achieved when p =

30



(log n + ωn)/n = 0.0069 + ωn/n. Ignoring the ωn term, we see a good match between the theory and the

simulation.
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Figure 6: Aggregate throughput and minimum SINR versus connection probability p in a shadow-fading

network of 1000 nodes. We see that the throughput is maximized at p ≈ 0.008, which is not far from

(log 1000)/1000 ≈ 0.0069, the large-n maximizing p predicted in Section 8.1.

Figure 7 shows the aggregate throughput and minimum SINR of a network with exponential fading

analyzed in Section 8.2 as a function of n. For large enough n the optimum threshold is β = (log n)/2

and k should be chosen as large as possible. For purposes of illustration, we therefore choose k as large as

possible, even for the relatively small values of n that we consider. (In this particular example smaller values

of k can yield higher total throughput when n is small.) The result is a throughput that grows approximately

logarithmically with n, as predicted theoretically. The figure also shows that choosing a β that is constant

has a detrimental effect on the throughput. Similarly, choosing a β that grows faster than logarithmically

would also be detrimental.

Figure 8 shows the aggregate throughput and minimum SINR of the decay-density network (as a function

of n) described in Section 8.3. The parameters used in the simulation are d = 1, ∆ = 1, and m = 3. This

is equivalent to placing nodes with unit spacing in a two-dimensional lattice and assuming a power-decay

that decreases as 1/r3. The figure shows that the throughput grows approximately linearly, as predicted by

equation (18).
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Figure 7: Aggregate throughput and minimum SINR versus number of nodes n in a network with exponen-

tial fading. We see that the throughput grows logarithmically using the optimum β computed in Section 8.2.

The average SINR obtained along the paths decays approximately as (log n)/n. Shown in dashed lines is

the detrimental effect of choosing a constant β = (log 100)/2.

These simulations show that Theorem 1, although designed for large n, is also accurate for finite n.

10.5 Conclusion

Our model for shared-medium wireless networks uses channels chosen according to a common distribution.

We have devised a method of operating this network using relays and provided an achievable aggregate

throughput as a function of the distribution. Distributions that have a certain sparsity of “good” connec-

tions seem to fare best and provide near-linear throughputs. We show that there exists an optimum amount

of shadow fading that a network should have—any more or any less degrades the throughput. We hope

that these results provide guidelines to the design of networks including, paradoxically, possible obstacle

placement if the network is “over-connected.”

We have only touched on decentralized schemes for choosing relay nodes and we have given a brief

description of an upper bound on the achievable throughput. We do not generally know how sensitive our

throughput results are to relaxing the i.i.d. assumption on the channel coefficients. A case where the channel

coefficients are independent but have distribution that depends on distance was examined in Section 8,
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Figure 8: Aggregate throughput and minimum SINR versus number of nodes n in the decay-density network

analyzed in Section 8.3. Equation (18) (for m > 2) predicts that the throughput should grow approximately

linearly.

where we argued that at the low connection probabilities that we require the sensitivity to distance was low.

It remains to be seen whether this sensitivity is low more generally.
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