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Abstract—The MSE performance and Cramer–Rao Bound
(CRB) for a recently proposed beamspace method, called con-
volutional beamspace (CBS), are studied. Beamspace processing
for DOA estimation offers lower computational complexity and
higher DOA resolution. However, traditional beamspace methods
do not retain the Vandermonde structure of uniform linear
array output, so additional preparation is required to apply
root-MUSIC. CBS preserves the Vandermonde structure by
using digital filtering. CBS also offers smaller estimation errors
for correlated sources. In this paper, we analyze the MSE
performance of CBS when MUSIC or root-MUSIC is used. The
variance is derived from the asymptotic probability distribution
of the eigenvectors of an average finite-snapshot covariance
matrix. Meanwhile, the bias due to the filtered stopband sources
is given by a first-order perturbation analysis. Known advantages
of CBS are confirmed by the MSE analysis. For example, CBS
yields smaller MSE for correlated sources than element-space.
Moreover, the CRB is also derived. Conventionally, the CRB is
a lower bound for unbiased estimators. A lower bound on the
variances of the biased CBS estimator is obtained and shown
to be well approximated by the classical CRB for unbiased
estimators. Two forms of CRB expressions are derived, and they
offer different insights as explained in the paper. All the results
also apply to element-space since element-space is a special case
of CBS. Finally, the theoretical results are verified by simulations.

Index Terms—Convolutional beamspace, DOA estimation, MU-
SIC, MSE, Cramer–Rao bound.

I. INTRODUCTION

CONVOLUTIONAL beamspace (CBS) is a beamspace
method for direction-of-arrival (DOA) estimation re-

cently proposed in [1], [2]. Given an N -sensor uniform linear
array (ULA) output x, traditionally one does beamspace
processing by computing y = Tx and estimating DOAs based
on y instead of x. Here y has length less than N , so there
is reduction in computational complexity. Besides, beamspace
methods usually enjoy higher DOA resolution and smaller bias
compared to element-space methods (which estimate DOAs
directly using x) [3]–[6]. In traditional beamspace methods
[6], [7], the choice of T makes y lose the ULA Vandermonde
structure, so elaborate steps need to be taken so as to apply
standard DOA estimation methods like root-MUSIC or ES-
PRIT. To avoid this additional preparation, the idea of FIR
filtering (convolution) is used in CBS [1]. In this way, the
beamspace matrix T is a banded Toeplitz matrix so that the
Vandermonde structure is preserved in y. Therefore, we can
readily use root-MUSIC [8] or ESPRIT [9] to estimate DOAs
based on y. In [1], uniform decimation (downsampling) on y is
further proposed to achieve significant complexity reduction.
More precisely, we compute the average of the covariance
matrices of all polyphase components [10] of y, and DOAs
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can be estimated based on the eigenvalue decomposition of
the average covariance. The idea of using FIR filtering in
beamspace methods is also proposed in [11], but the detailed
development of how we use the filter output to estimate DOAs
only appears in [1], [2].

This paper aims to study MSE performance of the CBS
method. Besides low computation and compatibility with
root-MUSIC and ESPRIT, CBS also offers performance ad-
vantage over element-space in some scenarios. While CBS
and element-space have similar DOA estimation errors for
uncorrelated sources, the estimation error of CBS can be
significantly smaller than that of element-space when there
are correlated sources. This benefit of CBS is demonstrated
in [1] mainly through numerical examples, while theoretical
MSE analysis is given only for limited simple cases. Moreover,
some details are bypassed in the analysis in [1], so the results
are only approximations. One main goal of this paper is thus
to develop a rigorous and more accurate analysis for the MSE
performance of CBS.

The foundations for the analysis of MSE performance for
MUSIC and root-MUSIC were laid many decades ago in the
classic papers [8], [12]. We extend the analysis to CBS in this
paper. According to the results in [8], [12], MUSIC and root-
MUSIC asymptotically have the same MSE in element-space,
and we will show that it is also true for CBS. Compared to
element-space, we have to tackle two additional complications
in CBS. First, the different polyphase components of y are not
independent, so it is more difficult to derive the asymptotic
probability distribution of the eigenvectors of the average
finite-snapshot covariance matrix. In the traditional asymptotic
theory for principal component analysis [13], only independent
observations are considered. This is directly applicable to
element-space, but some modifications are required to adapt it
to CBS. Second, the filter output y is represented only by the
sources in the filter passband since we assume the attenuated
stopband sources, if any, can be neglected [1]. This leads to
an additional error term that should be analyzed. As we shall
see, the effect of these filtered stopband sources is a bias, and
it can be analyzed separately from the variance term. A first-
order perturbation analysis is adopted. Furthermore, this bias
term (squared) is often much smaller than the variance term if
the CBS filter has reasonably good stopband attenuation and
if the stopband source power is not very large.

In addition, the Cramer–Rao Bound (CRB) [14], [15] for
CBS is also derived in this paper. Conventionally, the CRB
offers a lower bound on the variances of unbiased estimates
of parameters. As explained earlier, CBS yields biased DOA
estimates if there are stopband sources. A modified form of
CRB for a biased estimator of a scalar parameter is given in
[16]. In our case, a biased estimator of a vector of parameters,
i.e., DOAs, is considered, and we show that it can be viewed
as an unbiased estimator for some transformation of the
parameters. Hence, we can use the CRB for transformation
of parameters [14] to get a modified lower bound on the
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variances of CBS DOA estimates. This bound depends on
the Jacobian matrix of the transformation and can be numer-
ically computed. Moreover, assuming the stopband sources
are reasonably attenuated, the modified bound can be well
approximated by the original CRB for unbiased estimates. We
study the CRB under the stochastic model [15], [17], where
the source amplitudes are assumed random. We derive two
forms of CRB expressions. Form 1 is in the same style as the
CRB in [17]. Although it is not the focus of this paper, Form
1 can yield a CRB even when the noise is non-white with a
singular covariance. On the other hand, Form 2 is in the same
style as the CRB in [15] and offers some important insight.
For example, the CRB for a DOA is approximately inversely
proportional to its SNR and approximately independent of
source powers of other DOAs. A necessary and sufficient
condition for the CBS CRB to exist is also given. Although
the main goal of this paper is to study the MSE and CRB
for CBS, all the results also apply to element-space because
element-space can be viewed as a special case of CBS.

Paper outline: The basics of convolutional beamspace
(CBS) are reviewed in Sec. II, and notions for aiding later anal-
ysis are also presented. MSE for CBS is analyzed theoretically
in Sec. III. Cramer–Rao Bound (CRB) for CBS is then derived
in Sec. IV. In particular, two forms of CRB expressions are
proposed in Sec. IV-A and Sec. IV-B. Numerical examples
are shown in Sec. V to verify the theory. Finally, Sec. VI
concludes the paper. Appendices A, B, and C contain detailed
proofs of the results.

Notations: Boldfaced capital letters denote matrices, bold-
faced lowercase letters are reserved for column vectors, [A]i,k
and [A]:,k indicate the (i, k)-entry and the kth column of
the matrix A, and [v]i is the ith entry of the vector v.
For a matrix A, we use ∥A∥ to denote its spectral norm,
i.e., maximum singular value, and vec(A) the vectorization
of A. We use (·)∗, (·)T , (·)H , and (·)+ to denote complex
conjugate, transpose, conjugate transpose, and pseudoinverse,
respectively. The Kronecker product, Khatri–Rao product, and
Hadamard product of two matrices A and B are denoted by
A⊗B, A⊙B, and A◦B, respectively. For any two Hermitian
symmetric matrices A and B, we use A ⪰ B and B ⪯ A to
denote that A−B is positive semidefinite. For square matrices
A1, . . . ,An, we use diag(A1, . . . ,An) to denote the block
diagonal matrix having A1, . . . ,An in the diagonal. The ith
standard basis vector for the k-dimensional space is denoted
by δ(k)i . We use In and Om,n to denote the n × n identity
matrix and m×n zero matrix (the subscripts m and n may be
dropped if the dimensions are clear from the context), and E[·]
is the expectation operator. Finally, δik denotes the Kronecker
delta, i.e., δik = 1 if i = k and δik = 0 if i ̸= k.

II. CONVOLUTIONAL BEAMSPACE

We consider an N -sensor ULA with sensor spacing λ/2,
and assume D monochromatic plane waves of wavelength
λ impinging on the array with DOAs θi ∈ [−π/2, π/2)
measured from the normal to the line of array. The array output
is thus

x = Ac+ e, (1)

where c contains source amplitudes ci, and e is additive noise.
The array manifold A = [aN (ω1) aN (ω2) · · ·aN (ωD)], where
aN (ω) = [1 ejω ej2ω · · · ej(N−1)ω]T and ωi = π sin θi.
The stochastic (also known as unconditional) model [15] is
considered. That is, we assume c is a circularly-symmetric

complex Gaussian random vector with covariance P, which
can be non-diagonal if sources are correlated. The noise
e is assumed circularly-symmetric complex Gaussian with
covariance peI and uncorrelated with the sources. To apply
subspace methods like MUSIC [18] or root-MUSIC [8], we
compute the array output covariance

Rxx ≜ E[xxH ] = APAH + peI. (2)

Then the DOAs ωi can be estimated by finding the signal and
noise subspaces, which are spanned by appropriate subsets of
eigenvectors of Rxx.

In [1], a new beamspace method, called convolutional
beamspace (CBS) is proposed. This method enjoys the same
advantages as classical beamspace methods [4], [19]–[23],
including lower computational complexity, increased paral-
lelism of subband processing, and improved DOA resolution.
Moreover, it incorporates the idea of digital filtering and
preserves the Vandermonde structure of ULA outputs. This
allows us to apply subspace methods like root-MUSIC [8] and
ESPRIT [9] directly on the CBS output without additional
processing. In comparison, classical beamspace methods do
not retain the Vandermonde structure and require elaborate
preparation to do root-MUSIC [6] or ESPRIT [7].

In CBS [1], the ULA output x(n), 0 ≤ n ≤ N − 1 is
convolved with an FIR filter H(z) =

∑L−1
n=0 h(n)z

−n to obtain
the output y(n), where L < N . Then the steady-state samples
are collected in a vector

y ≜ [y(L− 1) y(L) · · · y(N − 1)]T = Hx

= ALd+He, (3)

where

H =


h(L− 1) · · · h(0) 0 · · · 0

0 h(L− 1) · · · h(0) · · · 0
...

...
. . .

...
. . .

...

0 0 · · · h(L− 1) · · · h(0)


is a (N − L+ 1)×N banded Toeplitz matrix,

AL = [aN−L+1(ω1) · · · aN−L+1(ωD)], (4)

and d = DHc with

DH = diag(H(ejω1)ejω1(L−1), . . . ,H(ejωD )ejωD(L−1)). (5)

Like the original array output x, the CBS output y is repre-
sented in terms of a Vandermonde matrix, i.e., AL. Hence, we
can compute the covariance

Ryy = ALRddA
H
L + peHHH , (6)

where

Rdd = E[ddH ] = DHPDH
H , (7)

and estimate DOAs using root-MUSIC or ESPRIT without
any further adjustment or processing to the data. Note from
(5) that the source amplitudes ci are filtered by the frequency
response H(ejωi). We assume signals in the filter stopband
are well attenuated, so y contains only those DOAs that fall
in the passband of H(ejω). Without loss of generality, assume
ω1, . . . , ωD0 are in the passband. Then, y ≈ AL,0d0 + He,
where AL,0 has the first D0 columns of AL, and d0 has the
first D0 entries of d.

Since y contains only passband sources, we can decimate
y without causing ambiguity [1]. This gives us complexity
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reduction, which is an integral part of any beamspace method.
In particular, if H(ejω) has passband width 2π/M for some
integer M , we can decimate y by M and obtain [1]

vl = Dly = Adecdl +DlHe ≈ Adec,0dl,0 +DlHe (8)

where Dl = [δ
(N−L+1)
l δ

(N−L+1)
l+M . . . δ

(N−L+1)
l+(J−1)M ]T is

a decimation matrix, Adec = [aJ(Mω1) · · · aJ(MωD)],
J = (N − L+ 1)/M (assumed an integer for simplicity),

dl = [c1e
j(L−1+l)ω1H(ejω1) · · · cDej(L−1+l)ωDH(ejωD )]T ,

Adec,0 has the first D0 columns of Adec, and dl,0 has the
first D0 entries of dl. In (8), l can take values 0, . . . ,M −
1, corresponding to the M polyphase components [10] of y.
We will estimate only the D0 passband DOAs based on vl.
We assume D0 < J for MUSIC to identify DOAs without
ambiguity [18]. To avoid wasting data, we compute the average
covariance

Rave =
1

M

M−1∑
l=0

Rvl
= AdecR̆dA

H
dec + peGdec, (9)

where R̆d is Rdl
= E[dld

H
l ] averaged over l (polyphase

index),

Rvl = E[vlv
H
l ] = AdecRdl

AH
dec + peGdec, (10)

and Gdec ≜ DlHHHDl is independent of l. To aid our later
analysis, we express

Rave = Adec,0R̆d,0A
H
dec,0 + δR+ peGdec, (11)

where the covariance perturbation

δR = AdecR̆dA
H
dec −Adec,0R̆d,0A

H
dec,0 (12)

contains the auto-covariance of stopband sources and the
cross-covariance between passband and stopband sources. This
covariance perturbation is due to the filtered stopband sources,
so we assume ∥δR∥ is small. In (12), R̆d,0 is Rdl,0

=
E[dl,0d

H
l,0] averaged over l. We assume that the CBS filter is

a spectral factor of a Nyquist(M) filter so that Gdec = I (see
[1]). That is, the noise after filtering and decimation remains
white. Then we compute the eigenvalue decomposition

Rave = EsΛsE
H
s +EnΛnE

H
n , (13)

where Es = [e1 · · · eD0
] and En = [eD0+1 · · · eJ ] contain

the signal and noise eigenvectors respectively, and Λs =
diag(λ1, . . . , λD0

) and Λn = diag(λD0+1, . . . , λJ) contain
the corresponding eigenvalues in descending order. Note that
only the first D0 eigenvalues are assumed dominant and
correspond to signals. Then we can estimate the passband
DOAs using MUSIC [18] or root-MUSIC [8]. Considering
MUSIC as an example, we evaluate the MUSIC spectrum

P (ω) = (aHJ (Mω)EnE
H
n aJ(Mω))−1 (14)

on a dense grid of potential DOAs and identify local maxima
as the estimates of Mωi mod 2π, or equivalently ωi+2πsi/M
for some integers si. Since ωi are known to be in the passband
of H(ejω) which has width 2π/M , the ambiguities si can
be resolved. In practice, we use a finite number, say K, of
independent snapshots to estimate the covariance matrix (9).
That is, we compute noise subspace estimate Ên based on

R̂ave =
1

KM

M−1∑
l=0

K∑
k=1

vl[k]v
H
l [k] (15)

and then evaluate the MUSIC spectrum (14).

III. MSE ANALYSIS FOR CBS
The goal of this section is to derive the MSE performance

when we use MUSIC [18] or root-MUSIC [8] to estimate
DOAs based on (15). In [1], comparison of MSE performance
between CBS and element-space is given mainly based on
numerical examples, and theoretical analysis of CBS MSE is
given only for limited simple cases in an approximated way. In
the following, we present a rigorous and more accurate MSE
analysis for CBS.

MSE of DOA estimates for element-space is analyzed
for MUSIC in [12] and for root-MUSIC in [8], and these
papers have remained the foundation for such analysis for
many years. Here we extend this analysis to CBS. In fact,
the probability distributions of DOA estimation errors and
thus MSEs in element-space are asymptotically the same for
MUSIC and root-MUSIC. We will show that these are also
true for CBS. Compared to element-space analysis, there are
two complications we should deal with for CBS. First, vl[k]
is not independent of vm[k] for l ̸= m, which makes the
derivation of the distribution of the eigenvectors of (15) more
difficult. Independent observations are assumed in the tradi-
tional asymptotic theory for principal component analysis [13],
which is naturally applicable to element-space. We modify the
method so that it can be used for CBS. Second, the presence of
δR due to the filtered stopband sources is an additional source
of estimation errors. We will show that the effect of the filtered
stopband sources is a bias and can be analyzed separately from
the variance term as we use a first-order perturbation analysis.
To this end, we define Ryy,0 = Ryy

∣∣
δR=O

and

Rave,0 = Rave

∣∣
δR=O

= Es,0Λs,0E
H
s,0 +En,0Λn,0E

H
n,0, (16)

to be the covariance matrices when δR is set to be zero
(equivalently, when the stopband sources are nulled), where
Es,0 = [e1,0 · · · eD0,0] and En,0 = [eD0+1,0 · · · eJ,0] contain
the signal and noise eigenvectors respectively, and Λs,0 =
diag(λ1,0, . . . , λD0,0) and Λn,0 = diag(λD0+1,0, . . . , λJ,0) =
peI contain the corresponding eigenvalues in the diagonals.
Here we only have D0 signal eigenvectors because the D−D0

stopband sources are null. According to the theory of perturba-
tion of Hermitian matrices [24], [25], the signal eigenvectors
of Rave are

el = el,0 +

J∑
r=1
r ̸=l

eHr,0δRel,0

λl,0 − λr,0
er,0, l = 1, . . . , D0 (17)

if ∥δR∥ is small compared to the norm of the first term in (11).
Here we assume the signal eigenvalues are distinct so that the
denominators λl,0−λr,0 ̸= 0. This is true with probability one
if the DOAs are uniformly randomly distributed.

In the following, we first present a lemma for the dis-
tribution of the signal eigenvectors êl,0 of the K-snapshot
estimate R̂ave,0 when we null the stopband sources. This
can be viewed as a generalized version of its element-space
counterpart, Lemma 3.1 in [12].

Lemma 1: The signal eigenvectors êl,0 of R̂ave,0 are asymp-
totically (for large K) jointly complex Gaussian with means
el,0, covariances

E[(êl,0 − el,0)(êr,0 − er,0)
H ]

=

J∑
i=1
i̸=l

J∑
k=1
k ̸=r

tr
(
R̃

(r,l)
yy (R̃

(k,i)
yy )H

)
KM2(λl,0 − λi,0)(λr,0 − λk,0)

ei,0e
H
k,0 (18)
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and relation matrices

E[(êl,0 − el,0)(êr,0 − er,0)
T ]

=

J∑
i=1
i̸=l

J∑
k=1
k ̸=r

tr
(
R̃

(k,l)
yy (R̃

(r,i)
yy )H

)
KM2(λl,0 − λi,0)(λr,0 − λk,0)

ei,0e
T
k,0 (19)

for 1 ≤ l, r ≤ D0, where R̃
(p,q)
yy ∈ CM×M for 1 ≤ p, q ≤ J

are submatrices of

R̃yy = (EH
0 ⊗ IM )Ryy,0(E0 ⊗ IM ) (20)

≜

R̃
(1,1)
yy · · · R̃

(1,J)
yy

...
. . .

...
R̃

(J,1)
yy · · · R̃

(J,J)
yy

 . (21)

Here E0 = [Es,0 En,0] contains the eigenvectors in (16).
Proof: See Appendix A.

Note that although the signals and noise are circularly-
symmetric complex Gaussian, the eigenvector estimates êl,0
are not in general circularly symmetric since the relation
matrices can be nonzero. Our expressions of covariance and
relation matrices reduce to those in [12] if we set L = 1,
the CBS filter H(z) = 1, the decimation ratio M = 1, and
Bi = 0 (since all sources are in the “passband”). In this case,
considering (16), we can simplify (20) as

R̃yy = EH
0 Ryy,0E0 = EH

0 Rave,0E0 = Λ0, (22)

where Λ0 = diag(Λs,0,Λn,0). Hence, we obtain the covari-
ances

E[(êl,0 − el,0)(êr,0 − er,0)
H ]

=

J∑
i=1
i ̸=l

λl,0λi,0

K(λl,0 − λi,0)2
ei,0e

H
i,0 · δlr (23)

and relation matrices

E[(êl,0 − el,0)(êr,0 − er,0)
T ]

=
−λl,0λr,0

K(λl,0 − λr,0)2
er,0e

T
l,0(1− δlr). (24)

These element-space expressions are much simpler than the
CBS ones because R̃yy is diagonal for element-space. Also,
as mentioned earlier, CBS eigenvector estimates êl,0 are
generally not circularly-symmetric complex Gaussian. How-
ever, for element-space, they are circularly-symmetric complex
Gaussian since E[(êl,0 − el,0)(êl,0 − el,0)

T ] = 0.
Next, using Lemma 1 and (17), we can derive the distribu-

tion of the DOA estimation errors ω̂i − ωi as follows.
Theorem 1: The CBS DOA estimation errors ω̂i − ωi for

passband sources, when either MUSIC or root-MUSIC is used
with (15), are asymptotically (for large K) jointly Gaussian
distributed with means Bi and cross-correlations

E[(ω̂i − ωi)(ω̂k − ωk)] = BiBk +
1

2KM2g(ω̃i)g(ω̃k)
Re

{
D0∑
l=1

D0∑
r=1

eHl,0aJ(ω̃i)a
H
J (ω̃k)er,0ȧ

H
J (ω̃i)En,0BlrE

H
n,0ȧJ(ω̃k)

+

D0∑
l=1

D0∑
r=1

eHl,0aJ(ω̃i)a
T
J (ω̃k)e

∗
r,0ȧ

H
J (ω̃i)En,0ClrE

T
n,0ȧ

∗
J(ω̃k)

}

for 1 ≤ i, k ≤ D0, where ω̃i = Mωi,

Bi =
Re

{
aHJ (ω̃i)

∑D0

l=1

(
el,0δe

H
l + δele

H
l,0

)
ȧJ(ω̃i)

}
Mg(ω̃i)

, (25)

δel =

J∑
r=1
r ̸=l

eHr,0δRel,0

λl,0 − λr,0
er,0, l = 1, . . . , D0, (26)

ȧJ(ω) = d
dωaJ(ω), g(ω) = ȧHJ (ω)En,0E

H
n,0ȧJ(ω), Blr and

Clr are (J −D0)× (J −D0) matrices with entries

[Blr]m,n =
tr
(
R̃

(r,l)
yy (R̃

(D0+n,D0+m)
yy )H

)
M2(λl,0 − pe)(λr,0 − pe)

(27)

[Clr]m,n =
tr
(
R̃

(D0+n,l)
yy (R̃

(r,D0+m)
yy )H

)
M2(λl,0 − pe)(λr,0 − pe)

(28)

for 1 ≤ m,n ≤ J − D0, 1 ≤ l, r ≤ D0, and R̃
(p,q)
yy , 1 ≤

p, q ≤ J are as defined in (21).
Proof: See Appendix B.

In particular, the MSEs E[(ω̂i−ωi)
2] of the passband DOAs

can be obtained by letting k = i in Theorem 1:

E[(ω̂i − ωi)
2] = B2

i + Vi (29)

where

Vi =
1

2KM2g2(ω̃i)
Re

{
D0∑
l=1

D0∑
r=1

eHl,0aJ(ω̃i)a
H
J (ω̃i)er,0ȧ

H
J (ω̃i)En,0BlrE

H
n,0ȧJ(ω̃i)

+

D0∑
l=1

D0∑
r=1

eHl,0aJ(ω̃i)a
T
J (ω̃i)e

∗
r,0ȧ

H
J (ω̃i)En,0ClrE

T
n,0ȧ

∗
J(ω̃i)

}
for i = 1, . . . , D0. As mentioned earlier, since vl[k] is not
independent of vm[k] for l ̸= m in (15), it is more difficult to
analyze CBS MSE. One can see such complications through
the M × M matrices R̃

(p,q)
yy appearing in (27) and (28). On

the other hand, the presence of the filtered stopband sources
simply results in a bias Bi in the DOA estimates. Thus, the
MSE is given in the form of a bias-variance decomposition.
As we shall see in the simulations (Fig. 4), the bias term is
typically much smaller than the variance term if the CBS filter
is properly designed with good stopband attenuation and if the
stopband sources are not too powerful. Hence, we may ignore
the bias term in many practical cases. Due to the complicated
MSE expression, it is not easy to get further insight. However,
we will present more insight based on the CRB expressions
in Sec. IV.

Our MSE expression can be viewed as a generalized version
of the element-space MSE expression in [12]. Our expression
reduces to that in [12] if we set L = 1, the CBS filter H(z) =
1, the decimation ratio M = 1, and Bi = 0. Then again we
have R̃yy = Λ0 as in (22) and thus

Blr =
λl,0peI

(λl,0 − pe)2
δlr (30)

and Clr = O for all l, r. This is why we can get the much
more simplified expression for element-space MSE

E[(ω̂i − ωi)
2] =

1

2Kg(ωi)

D∑
l=1

λl,0pe
(λl,0 − pe)2

|eHl,0aJ(ωi)|2 (31)
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given in [12]. Although it is known that CBS CRB cannot be
smaller than element-space CRB [1], [26], it is still unclear
whether CBS MSE can be smaller than element-space MSE
for uncorrelated sources because of the complicated MSE
expression for CBS. For correlated sources, CBS MSE can
be much smaller than element-space MSE (see Fig. 5(b)).

IV. CRAMER–RAO BOUND FOR CBS
In this section, we derive the Cramer–Rao Bound (CRB)

[14] for the DOA estimates based on the CBS output y in
(3), under the stochastic model [15], [17]. The CRB offers
a lower bound on the variances of unbiased estimates of
parameters. However, as shown in Sec. III, CBS yields biased
DOA estimates if there are stopband sources. Hence, some
extra care will be taken in order to derive the CRB for
biased estimators [14]. We shall derive two forms of CRB
expressions. Form 1 is in the same style as the CRB in [17].
It is derived from inverting the Fisher information matrix [14],
and a necessary and sufficient condition for the existence of the
CRB is naturally obtained in this process. Although it is not
the focus of this paper, Form 1 also yields a CRB even when
the noise is non-white with a singular covariance. Meanwhile,
Form 2 is in the same style as the CRB in [15] and offers
some additional insight as shown later.

The probability model for stochastic CRB [15], [17] based
on K snapshots of CBS outputs is

y[1]
y[2]

...
y[K]

 ∼ CN

0,


Ryy O · · · O
O Ryy · · · O
...

...
. . .

...
O O · · · Ryy


 , (32)

where Ryy is as in (6). The parameter vector for this proba-
bility model is

α =
[
[ωi]

D
i=1 [pi]

D
i=1 [P

(r)
ik ]i>k [P

(i)
ik ]i>k pe

]T
, (33)

where pi is the ith diagonal entry of P, and P
(r)
ik and P

(i)
ik

are the real and imaginary parts of the (i, k)-entry of P,
respectively. Thus, there are D + D2 + 1 real parameters,
among which only the D parameters ω = [ω1 · · · ωD]T

are of interest.
For any unbiased estimator α̂ with E[α̂] = α, the CRB is

given by [14]

CRBunb(α) = [I(α)]−1, (34)

where I(α) is the Fisher information matrix for the model,
such that the covariance of the estimator

cov(α̂) ⪰ CRBunb(α). (35)

As shown in Sec. III, however, CBS yields biased estimates
ω̂0 for the in-band (passband) DOAs ω0 = [ω1 · · · ωD0

]T if
there are out-of-band (stopband) sources. A modified form of
CRB for a biased estimator of a scalar parameter is given in
[16]. To derive a bound for the biased vector estimator ω̂0,
we consider its expectation E[ω̂0]. It must be some function
of the model parameters α, say, E[ω̂0] = ψ(α). Then ω̂0

can be viewed as an unbiased estimator for the transformation
ψ(·) of the parameter vector α. Hence, assuming ψ(α) is
differentiable, we can use the CRB for transformations [14]
to obtain

cov(ω̂0) ⪰
∂ψ(α)

∂α
CRBunb(α)

(
∂ψ(α)

∂α

)T

, (36)

where CRBunb(α) is defined in (34), and ∂ψ
∂α is the Jacobian

matrix with entries[
∂ψ

∂α

]
i,k

=
∂[ψ]i
∂[α]k

=

{
1 + ∂Bi

∂[α]i
, i = k

∂Bi

∂[α]k
, i ̸= k

. (37)

Here Bi are the biases defined in (25). Although the derivatives
∂Bi

∂[α]k
can be analytically computed from (25), the results will

be lengthy due to the complicated dependence of el,0 and λl,0

on [α]k. Thus, we omit the tedious derivations, which may
not give much insight. In this paper, we only compute the
derivatives numerically in the example of Fig. 4. Moreover,
these derivatives ∂Bi

∂[α]k
are typically small since the covariance

perturbation δR due to the filtered stopband sources is small.
Thus,

∂ψ(α)

∂α
≈

[
I OD0,D−D0+D2+1

]
(38)

so that we have

cov(ω̂0) ⪰
∂ψ(α)

∂α
CRBunb(α)

(
∂ψ(α)

∂α

)T

(39)

≈ CRBunb(ω0), (40)

where CRBunb(ω0) is the top left D0 × D0 block of
CRBunb(α). Note that (40) is precisely the CRB for CBS
if there are no stopband sources so that ω̂0 is unbiased. If
stopband sources exist, as we shall see in simulations (Fig.
4), usually (40) also gives a good lower bound. It does not
make a big difference to consider (39) unless the out-of-band
source power is extremely large. In the following, we focus
on the ω-block CRBunb(ω), i.e., the top left D×D block of
CRBunb(α) because it leads to more elegant and insightful
expressions. Once we have CRBunb(ω), we can immediately
obtain CRBunb(ω0) as a submatrix. Then in particular, we
have that the variance

var(ω̂i) ≥ [CRBunb(ω0)]i,i (41)

for each in-band DOA estimate ω̂i. Now we are ready to derive
Form 1 of the CRB by investigating the Fisher information
matrix I(α).

A. Form 1
The (i, k)-entry of the Fisher information matrix I(α) for

the model (32) can be derived as [17]

[I(α)]i,k = K
∂rHyy
∂[α]i

(
RT

yy ⊗Ryy

)−1 ∂ryy
∂[α]k

, (42)

where ryy = vec(Ryy). Separating the parameters of interest
from the other parameters, we have

I(α) = K

[
GHG GH∆1

∆H
1 G ∆H

1 ∆1

]
, (43)

where

G =
(
RT

yy ⊗Ryy

)− 1
2

[
∂ryy
∂[α]1

· · · ∂ryy
∂[α]D

]
, (44)

∆1 =
(
RT

yy ⊗Ryy

)− 1
2

[
∂ryy

∂[α]D+1
· · · ∂ryy

∂[α]D+D2+1

]
. (45)

Here we assume Ryy is positive definite so that (RT
yy⊗Ryy)

is also positive definite. Then (RT
yy ⊗Ryy)

−1/2 denotes the
inverse of its positive definite square root. For the CRB (34)
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to exist, we require I(α) to be invertible, so we obtain the
following theorem.

Theorem 2: The CRB (34) exists if and only if

M =
[
M1 (ALDH)∗ ⊗ (ALDH) vec(HHH)

]
(46)

has full column rank, where

M1 = Ȧ∗
L ⊙ (ALDHPD∗

H) + (ALDHPD∗
H)∗ ⊙ ȦL. (47)

Proof: See Appendix C.
Theorem 2 offers a necessary and sufficient condition for the

CRB to exist. Since M has (N−L+1)2 rows and D+D2+1
columns, it can have full column rank only if D < N −
L + 1. In [17], a similar condition for the existence of the
element-space CRB is given assuming sources are known to
be uncorrelated. In the following, we assume that M indeed
has full column rank. Now using the ideas of block matrix
inversion and Schur complements [17], we can show that (34)
and (43) imply that

CRBunb(ω) =
1

K

(
GHΠ⊥

∆1
G
)−1

, (48)

where Π⊥
∆1

= I−∆1(∆
H
1 ∆1)

−1∆H
1 denotes the orthogonal

projection onto the null space of ∆H
1 . Computing the above

derivatives and simplifying the results, we can obtain the CRB
as follows.

Theorem 3: If there are no stopband sources, the CRB for
the DOAs ω for CBS is

CRBunb(ω) =
1

K

(
GHΠ⊥

∆G
)−1

, (49)

where

G =
(
RT

yy ⊗Ryy

)− 1
2
(
Ȧ∗

L ⊙ (ALDHPD∗
H)

+ (ALDHPD∗
H)∗ ⊙ ȦL

)
, (50)

∆ =
(
RT

yy ⊗Ryy

)− 1
2

·
[
(ALDH)∗ ⊗ (ALDH) vec(HHH)

]
. (51)

Here AL and DH are as defined in (4) and (5), and

ȦL = [ȧN−L+1(ω1) · · · ȧN−L+1(ωD)] (52)

with ȧN−L+1(ω) =
d
dωaN−L+1(ω). If stopband sources exist,

(49) is an approximate bound.
Remark 1) Suppose there are stopband sources so that the

CBS DOA estimator is biased. Then the exact CRB (39) can
be computed from (34) and (43) with G as in (50) and ∆1

as in (137). In this paper, we only numerically compute the
derivatives in the Jacobian matrix in the example of Fig. 4.

Remark 2) By slightly modifying the proof of Theorem 3,
one can verify that if the noise covariance is peRe instead of
peI for any Re known a priori, then the CRB is as in (49)–
(51) except that HHH is replaced by HReH

H in (51). It is
valid even when Re is singular. This result for a singular noise
covariance cannot be obtained using Form 2 in Sec. IV-B.

Proof of Theorem 3: See Appendix C.
The CRB in Theorem 3 serves as a good reference for

determining how well CBS performs in practice. In Sec. V,
we will show that the MSE performance of CBS is close to
the CRB in many cases. Besides, since element-space can be
viewed as a special case of CBS, we can obtain the following
corollary.

Corollary 1: The CRB for the DOAs ω for element-space
is

CRBelm(ω) =
1

K

(
GHΠ⊥

∆G
)−1

, (53)

where

G =
(
RT

xx ⊗Rxx

)− 1
2

(
Ȧ∗ ⊙ (AP) + (AP)∗ ⊙ Ȧ

)
, (54)

∆ =
(
RT

xx ⊗Rxx

)− 1
2 [A∗ ⊗A vec(I)] . (55)

Here

Ȧ = [ȧN (ω1) · · · ȧN (ωD)] (56)

with ȧN (ω) = d
dωaN (ω).

Remark: Similar to Remark 2 for Theorem 3, if the noise
covariance is peRe instead of peI for any Re known a priori,
then the CRB is as in (53)–(55) except that I is replaced by
Re in (55). It is valid even when Re is singular.

Proof of Corollary 1: This corollary is obtained by
setting the filter length L = 1 and CBS filter H(z) = 1 in
Theorem 3.

Note that although Theorem 3 for CBS applies only to
ULAs, Corollary 1 applies to any linear arrays. One can verify
that our proof under the special case of element-space is
valid for sparse arrays. It is valid even when the sources are
correlated.

In [17], [27], different expressions of element-space CRBs
are also derived, but uncorrelated sources are assumed therein.
It is important to consider correlated sources because CBS is
especially advantageous over element-space in this case. Yet,
to compare with previous works, we also consider uncorrelated
sources in the following. When the sources are known to
be uncorrelated a priori, i.e., P = diag(p1, . . . , pD), the
parameter vector becomes

α =
[
[ωi]

D
i=1 [pi]

D
i=1 pe

]T
(57)

instead of (33), and the CRB for CBS can be derived as
follows.

Theorem 4: Suppose the sources are known to be uncorre-
lated a priori. Then if there are no stopband sources, the CRB
for the DOAs ω for CBS is

CRBunc
unb(ω) =

1

K

(
GHΠ⊥

∆unc
G
)−1

, (58)

where G is as in (50) and

∆unc =
(
RT

yy ⊗Ryy

)− 1
2

·
[
(ALDH)∗ ⊙ (ALDH) vec(HHH)

]
. (59)

The CRB (58) exists if and only if

Munc =
[
M1 (ALDH)∗ ⊙ (ALDH) vec(HHH)

]
(60)

has full column rank, where M1 is as in (47). If stopband
sources exist, (58) is an approximate bound.

Proof: The proof is similar to that of Theorem 2 and
Theorem 3.

Again, element-space can be viewed as a special case of
CBS, so we obtain the following corollary.

Corollary 2: When the sources are known to be uncorrelated
a priori, the CRB for the DOAs ω for element-space is

CRBunc
elm(ω) =

1

K

(
GHΠ⊥

∆unc
G
)−1

, (61)



7

where G is as in (54) and

∆unc =
(
RT

xx ⊗Rxx

)− 1
2 [A∗ ⊙A vec(I)] . (62)

Proof: This corollary is obtained by setting the filter
length L = 1 and CBS filter H(z) = 1 in Theorem 4.

One can check that (61) is equivalent to the CRB expres-
sions in [17], [27]. Besides, comparing Theorem 4 to Theorem
3 and Corollary 2 to Corollary 1, we observe that the only
difference in the CRB expressions is the substitution of a
Khatri–Rao product for a Kronecker product in the expression
for ∆. Therefore, ∆unc is a submatrix of ∆, obtained by
selecting proper columns of ∆. This allows us to formally
establish the following result. This essentially follows the
intuition that additional prior knowledge can only decrease
the CRB.

Theorem 5: Suppose the sources are uncorrelated. Then the
CRB for the DOAs ω for CBS when the information of the
uncorrelatedness of the sources is unknown a priori is not
smaller than that when this information is known a priori:

CRBunb(ω)
∣∣
P=diag(p1,...,pD)

⪰ CRBunc
unb(ω). (63)

Similarly, it is true for element-space:

CRBelm(ω)
∣∣
P=diag(p1,...,pD)

⪰ CRBunc
elm(ω). (64)

Proof: Since ∆unc is a submatrix of ∆, obtained by
selecting proper columns of ∆ (for both CBS and element-
space), we have Π⊥

∆ ⪯ Π⊥
∆unc

. Hence, (GHΠ⊥
∆G)−1 ⪰

(GHΠ⊥
∆unc

G)−1, which completes the proof.
Theorem 5 shows that the CRB cannot be larger if more

prior information is given, which is not surprising. We will
verify this theorem by simulations (Fig. 6).

B. Form 2
Now we get back to our correlated model with the parameter

vector (33). In [15], an alternative form of element-space
stochastic CRB different from Corollary 1 is derived for any
linear array under two added assumptions. First, assume the
manifold matrix A has full column rank. Second, assume the
number of sources D < N , the number of sensors. In the case
of a ULA, since A is Vandermonde, the second assumption
implies the first one. Hence, for CBS CRB based on the filter
output y, if we assume D < N −L+1, then we can derive a
second form of CRB using results in [15]. Note that this same
assumption is required for Form 1 to be valid. In the following,
we assume this inequality is satisfied. Since the model in [15]
only applies to white noise, a noise-whitening transformation
is used to obtain the following theorem.

Theorem 6: If there are no stopband sources, the CRB for
the DOAs ω for CBS is

CRBunb(ω) =
pe
2K

[Re{S1 ◦ S∗
2}]

−1
, (65)

where

S1 = PAHHHR−1
yyHAP, (66)

S2 = ȦHWHΠ⊥
WAWȦ (67)

with Ȧ as defined in (56) and

W = (HHH)−1/2H. (68)

Like in Theorem 3, (65) is precisely the CRB for CBS if
there are no stopband sources. If stopband sources exist, it is

an approximate bound. An exact bound can be computed as
in Remark 1 of Theorem 3.

Remark: This noise-whitening method requires a nonsin-
gular noise covariance, i.e., HHH in the case of CBS. By
definition we assume h(0) ̸= 0 and h(L− 1) ̸= 0 so that L is
the filter length. This implies that the banded Toeplitz matrix
H has full row rank, so HHH is positive definite, and W
is well defined. This is also why we cannot obtain a Form-2
CRB if the noise covariance is peRe instead of peI for any
singular Re known a priori (but we can obtain a Form-1 CRB
as in Remark 2 for Theorem 3).

Proof of Theorem 6: Consider the noise-whitening trans-
formation

z = (HHH)−1/2y. (69)

Since this transformation is invertible, the CRB based on z
is the same as the CRB based on y. We can show that the
covariance of z is given by

Rzz = AzPA
H
z + peI, (70)

where Az = WA is the equivalent manifold for z, and W is
defined in (68). Since (70) has the same form as the element-
space model in [15], we can apply the CRB expression therein
and obtain (65), with

S1 = PAH
z R−1

zz AzP (71)

and S2 as in (67). Using (68) and (69), we can show that (71)
is equivalent to (66).

Note that if D < N−L+1, one can verify that the RHS of
(49) indeed equals the RHS of (65). The detailed derivations
are lengthy and omitted here, but the main idea is to start from
computing the block matrix inversion (∆H∆)−1 in (49), to
express quantities in terms of signal and noise subspaces, and
to simplify things using properties of the Kronecker product
and Khatri–Rao product. Then, one can finally obtain (65). In
this process, we need D < N − L+ 1 to guarantee the noise
subspace to have a nonzero dimension.

Theorem 6 offers a second form of CRB for CBS. Some
additional insight can be obtained from Form 2. To this end,
we first show an approximation as follows.

Theorem 7: Assume∥∥∥pe(AHΠHHA)−1/2P−1(AHΠHHA)−1/2
∥∥∥ ≪ 1. (72)

Then the CRB (65) can be approximated by

CRBunb(ω) ≈
pe
2K

[Re{P ◦ S∗
2}]

−1
, (73)

where S2 is as in (67).
Remark: The insight to be gained from this theorem will be

clear from Corollaries 3 and 4 below.
Proof of Theorem 7: To prove the theorem, we only have

to show that S1 ≈ P under the assumption (72). Consider (70)
and (71). Applying the matrix inversion lemma [28], we have

R−1
zz = p−1

e I− p−2
e Az(P

−1 + p−1
e AH

z Az)
−1AH

z

= p−1
e I− p−1

e Az(A
H
z Az)

− 1
2 (S+ I)−1(AH

z Az)
− 1

2AH
z

where

S = pe(A
H
z Az)

− 1
2P−1(AH

z Az)
− 1

2 (74)
= pe(A

HΠHHA)−1/2P−1(AHΠHHA)−1/2. (75)
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Now since ∥S∥ ≪ 1 due to (72), we have (S+ I)−1 ≈ I−S.
Thus,

S1 = PAH
z R−1

zz AzP (76)
≈ p−1

e PAH
z AzP

− p−1
e PAH

z Az(A
H
z Az)

− 1
2 (AH

z Az)
− 1

2AH
z AzP

+ p−1
e PAH

z Az(A
H
z Az)

− 1
2S(AH

z Az)
− 1

2AH
z AzP (77)

= p−1
e PAH

z AzP− p−1
e PAH

z AzP+P = P. (78)

This completes the proof.
The assumption (72) is satisfied in practical CBS and

element-space systems with large arrays. To understand why
it is the case, note that the LHS of (72) is less than or
equal to ∥peP−1∥ · ∥(AHΠHHA)−1∥. If the number of
sensors N is large and if the DOAs are not very close to
one another, then AHA ≈ NI. That is, the columns of A
are approximately orthogonal. Meanwhile, according to our
numerical experiments, ΠHHA ≈ A for properly designed
CBS filter. Together, we have ∥(AHΠHHA)−1∥ ≈ N−1.
Moreover, we assume that the SNR is not very small and that
the correlation coefficients between the sources are not close
to 1, so that ∥peP−1∥ ≪ N . Hence, we finally obtain (72).
Numerical values for the LHS of (72) will be given in the
example of Fig. 3.

The fact that ΠHHA ≈ A for properly designed CBS filter
is expectable to some extent. In [26], it is shown that the CRB
based on y = Tx for any beamspace matrix T is larger than
or equal to the element-space CRB, and that ΠTHA = A
is a necessary condition for the beamspace CRB to equal the
element-space CRB. Thus, it is not surprising that the well-
performing method CBS leads to ΠHHA ≈ A. This means
that all steering vectors roughly lie in the column space of
HH , so no significant signal information is lost.

Having proved Theorem 7 and discussed the practical side
of the assumption (72), we now derive the following corollary
relating CRB to source powers.

Corollary 3: Suppose the assumption in Theorem 7 holds
so that we have (73). Also assume the correlation coefficient
of each pair of sources is fixed. Then the CRB for a DOA is
approximately inversely proportional to its own source power
and approximately independent of the source powers of the
other DOAs. This is true for both CBS and element-space.

Proof: We can express the source covariance P as

P = DpRρDp, (79)

where Dp = diag(
√
p1, . . . ,

√
pD), and the correlation coeffi-

cient matrix Rρ has entries [Rρ]i,k = E[cic
∗
k]/

√
pipk. Hence,

(73) implies

CRBunb(ω) ≈
pe
2K

[Re{DpRρDp ◦ S∗
2}]

−1
, (80)

=
pe
2K

D−1
p [Re{Rρ ◦ S∗

2}]
−1

D−1
p . (81)

Thus, the CRB for the ith DOA is

CRBunb(ωi) ≈
pe

2Kpi

[
[Re{Rρ ◦ S∗

2}]
−1

]
i,i

, (82)

which is inversely proportional to pi and independent of pk
for all k ̸= i. This is also true for element-space since CBS
reduces to element-space if we set the filter length L = 1 and
CBS filter H(z) = 1.

Corollary 3 shows that the CRB for a DOA almost does not
depend on the power of another DOA. In particular, the CBS
CRB for in-band DOAs is almost independent of out-of-band

source powers. That is, a more powerful out-of-band jammer
does not impose a larger lower bound on MSE of in-band
DOA estimates. As we shall see in simulations (Fig. 3), CBS
can yield an in-band MSE almost independent of the out-of-
band source powers as long as the filter stopband attenuation
is large enough to sufficiently attenuate the stopband sources.

Another corollary relating CRB to noise power can be
obtained from Theorem 7 as stated below.

Corollary 4: Suppose the assumption in Theorem 7 holds so
that we have (73). Then the CRB for a DOA is approximately
proportional to the noise power pe. This is true for both CBS
and element-space.

Proof: It is immediately proved by (73).
Corollary 3 and Corollary 4 together imply that the CRB

of a DOA ωi is approximately inversely proportional to its
own SNR pi/pe. This will be verified by simulations (Fig.
5). Note that the two corollaries may not be easily proved by
directly using the CRB expression in Theorem 3 or Theorem
6. Even Theorem 6 does not immediately lead to Corollary 4
because S1 in (65) depends on pe. In this sense, Theorem 7
is an important result which gives much more insight.

V. SIMULATIONS

In the following numerical examples, we assume the number
of DOAs is known. To compare with CBS using a filter H(z),
for element-space, we just consider DOA estimates in the
passband of H(z) and ignore those in the stopband. Whenever
we mention mean square errors (MSEs) or root mean square
errors (RMSEs) in detected in-band source angles, we refer to
averaging square errors measured in ω over all in-band DOAs.
Similarly, since the stochastic CRBs [15] differ for different
DOAs, we average the variance bounds over all in-band DOAs.
The theoretical MSEs of CBS and element-space are computed
from (29) and (31), respectively. Unless otherwise stated, the
CBS and element-space CRBs are computed from (49) and
(53), respectively. Note that (49) is precisely the CRB for
CBS only if there are no stopband sources so that the in-
band DOA estimates are unbiased. If stopband sources exist,
(49) is approximately a lower bound on the variance of DOA
estimates of CBS due to (40). The exact lower bound (39) for
the biased CBS estimator will be compared to the approximate
bound in Fig. 4. The CBS filter H(z) is designed to be a
spectral factor of a lowpass Nyquist-equiripple filter [29], with
passband edge π/2M and stopband edge 3π/2M , where M
is the decimation ratio.

In Fig. 1, we compare RMSEs of DOA estimates and
CRBs for CBS with various filter length L, and for element-
space. The RMSEs based on Monte Carlo simulation and
based on our theoretical analysis in Sec. III are both shown
for comparison. We consider a ULA with N = 99 sensors
receiving 6 sources at angles θ = −5◦, 0◦, 5◦, 40◦, 60◦, and
80◦. All sources have power 1. Sources n and n + 3 have
a correlation coefficient ρ = 0.9 for n = 1, 2, 3. For CBS,
the decimation ratio is M = 4. Hence, the three sources at
−5◦, 0◦ and 5◦ are in the passband, and the others are in the
stopband. Noise variance is pe = 1. Root-MUSIC is used to
estimate DOAs. Covariance estimates are obtained by using
500 snapshots, and 500 Monte Carlo runs are used. Several
observations can be made from Fig. 1. First, the theoretical
RMSE curves almost coincide with simulated RMSE curves
for both CBS and element-space. This verifies our MSE
analysis in Sec. III. Second, the CBS CRB is always larger
than the element-space CRB. This is consistent with the known
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Fig. 1. Simulated RMSE, theoretical RMSE, and CRB for CBS with various
filter length L, and for element-space.
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Fig. 2. Magnitude responses of the Nyquist-equiripple filters used for CBS
with several typical values of filter length L.

fact that beamspace CRB cannot be smaller than element-
space CRB [26]. However, the RMSE of CBS is uniformly
smaller than that of element-space in this example. That is,
CBS offers a practical algorithm with RMSE approaching
the CRB when there are correlated sources, while there is a
large gap between RMSE and CRB for element-space. Finally,
there is an optimal filter length such that the RMSE of CBS
is minimized. If the filter length is too small, the stopband
attenuation is not good enough (see Fig. 2), and the filtered
stopband sources contribute to a large bias Bi as defined
in (25). If the filter length is too large, we need to discard
many transient samples in the filter output (since we retain
only steady-state samples). This eventually leads to a larger
RMSE. By plotting a RMSE curve as a function of the filter
length using our analysis in Sec. III, we can determine the
optimal filter length. Magnitude responses of the Nyquist-
equiripple filters used for CBS with several typical values
of filter length L are shown in Fig. 2. These filters indeed
have equiripple stopband attenuation. Besides, we obtain better
stopband attenuation as the filter length increases.

In Fig. 3, we compare RMSEs of DOA estimates and
CRBs for CBS and element-space as we vary the out-of-band
source power. The filter length is now fixed at L = 16, and
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Fig. 3. Simulated RMSE, theoretical RMSE, and CRB for element-space and
CBS as the out-of-band source power varies.
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Fig. 4. Simulated MSE, theoretical MSE, theoretical variance, theoretical
squared bias, CRB for unbiased estimate (40), and the exact variance bound
(39) for biased estimate for CBS as the out-of-band source power varies.

all the other simulation parameters are the same as in the
example of Fig. 1. According to Fig. 3, both the CBS CRB
and element-space CRB almost do not depend on the out-
of-band source power, as implied by Corollary 3. To obtain
this corollary, we need the assumption (72) in Theorem 7
to be valid. This is indeed the case since the LHS of (72)
gradually decreases from 0.112 to 0.0627 as the out-of-band
source power increases from 0 dB to 30 dB. Besides, just
like in Fig. 1, the CBS CRB is larger than the element-space
CRB. However, the RMSE of CBS is smaller than that of
element-space if the out-of-band source power is not too large.
To better understand how the MSE and CRB of CBS change
with the out-of-band source power, in Fig. 4, we show the
simulated MSE, theoretical MSE B2

i +Vi (as defined in (29)),
theoretical variance Vi, theoretical squared bias B2

i , CRB for
unbiased estimate (40), and the exact variance bound (39) for
biased estimate for CBS. As long as the out-of-band source
power is not extremely large, say, not greater than 20 dB in
this example, our theoretical expression gives a good estimate
of the true MSE. If the out-of-band source power is extremely
large, our assumption that the covariance perturbation δR in
(12) due to the filtered stopband sources is small will be
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Fig. 5. Simulated RMSE, theoretical RMSE, and CRB for element-space and
CBS as the SNR varies. Sources n and n + 3 have a correlation coefficient
ρ for n = 1, 2, 3. (a) ρ = 0. (b) ρ = 0.9.

invalid. Thus, there is a larger difference between theoretical
MSE and simulated MSE. Another observation is that the
theoretical squared bias is much smaller than the theoretical
variance for out-of-band source power not greater than 10 dB.
Hence, we may ignore the bias term in the MSE analysis if the
passband and stopband sources have similar powers. Finally,
as mentioned in the beginning of this section, the CBS CRB
in each previous plot is approximately a lower bound on the
variance of DOA estimate due to (40). Here we compare the
exact lower bound (39) for the biased CBS estimator with the
approximate bound. The exact CRB (39) is computed from
(34) and (43) with G as in (50) and ∆1 as in (137), and the
derivatives in the Jacobian matrix are computed numerically.
We see that the approximate bound is similar to the exact
bound if the out-of-band source power is not greater than 20
dB. Hence, (40) gives a good lower bound in practice.

In Fig. 5, we compare RMSEs of DOA estimates and CRBs
for CBS and element-space as we vary the SNR. We consider
the same three passband sources and three stopband sources as
in the example of Fig. 1. All sources have power 1. The SNR
is thus 1/pe, where the noise power pe is varied. Sources n
and n+ 3 have a correlation coefficient ρ for n = 1, 2, 3. All
the other simulation parameters are the same as before. In Fig.
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Fig. 6. CRB for CBS as the SNR varies. The uncorrelatedness of the sources
are assumed either unknown or known a priori.

5(a), we consider ρ = 0. In this uncorrelated case, both CBS
and element-space RMSEs approach the CRBs, and the two
systems have similar performance. In Fig. 5(b), we consider
ρ = 0.9. In this correlated case, CBS RMSE still approaches
its CRB, but element-space RMSE does not. CBS RMSE is
significantly smaller than element-space RMSE. In these two
subfigures, the theoretical RMSE curves again almost coincide
with simulated RMSE curves for both CBS and element-space.
Moreover, both CBS and element-space CRBs look linear in
the log-log plots, and the CRBs decrease by a factor of 10
as SNR increases by 20 dB. That is, the CRBs for MSE is
inversely proportional to the SNR. This verifies the result of
Corollary 4.

As mentioned in the beginning of this section, in all
the previous examples, the CBS and element-space CRBs
are computed from (49) and (53), respectively. That is, the
correlations Pik between sources are assume unknown as in
(33). When all the sources are uncorrelated, we can also
assume that the uncorrelatedness is known a priori. Under
this assumption, we have obtained the CBS and element-
space CRBs in (58) and (61), respectively. To compare the
two cases, we consider again the example of Fig. 5(a) and
compute the CBS CRB assuming either unknown or known
uncorrelatedness. The results are shown in Fig. 6. The CRB
assuming known uncorrelatedness is smaller than the CRB
assuming unknown uncorrelatedness, which verifies Theorem
5. Interestingly, the difference between them is very small, so
this prior information is not so influential.

VI. CONCLUSION

The MSE performance and Cramer–Rao Bound (CRB) for
convolutional beamspace (CBS) are analyzed in this paper.
Theoretical expressions of MSE are derived assuming that
MUSIC or root-MUSIC is used to estimate DOAs. (The
performance is the same for both.) The bias of the CBS
estimator, though negligible in some cases, is given via a
first-order perturbation analysis. To obtain the variance of
the CBS estimator, we develop an approach to derive the
asymptotic probability distribution of the eigenvectors of the
average finite-snapshot covariance matrices of dependent ran-
dom vectors. This approach can be useful to other applications
because previous results are only for independent random
vectors. As for CRB, we offer two forms of expressions. Form
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1 is derived directly from the Fisher information matrix. Form
2 is derived via a noise-whitening approach and offers more
insight. In particular, the CRB for a DOA is approximately
inversely proportional to its own source power and approxi-
mately independent of the source powers of the other DOAs.
Also, the CRB for a DOA is approximately proportional to
the noise power. These results are also true for element-space
and to the best of our knowledge, have not been theoretically
established in previous works. Extensive numerical examples
are also given, which verify the theoretical results.

APPENDIX A
PROOF OF LEMMA 1

Consider the K-snapshot estimate R̂ave,0 = R̂ave

∣∣
δR=O

with stopband sources nulled, where R̂ave is defined in (15).
We have

E[R̂ave,0] = Rave,0 = Adec,0R̆d,0A
H
dec,0 + peGdec (83)

and

K2M2 E
[
[R̂ave,0]i,p[R̂ave,0]

∗
g,h

]
= E

[ K∑
k=1

M−1∑
l=0

[vl[k]]i[vl[k]]
∗
p

K∑
n=1

M−1∑
m=0

[vm[n]]∗g[vm[n]]h

]

= E

[ K∑
k=1

M−1∑
l=0

M−1∑
m=0

[vl[k]]i[vl[k]]
∗
p[vm[k]]∗g[vm[k]]h

+

K∑
k=1

∑
n ̸=k

M−1∑
l=0

M−1∑
m=0

[vl[k]]i[vl[k]]
∗
p[vm[n]]∗g[vm[n]]h

]

= E

[
K

M−1∑
l=0

M−1∑
m=0

[vl]i[vl]
∗
p[vm]∗g[vm]h

+K(K − 1)M2[Rave,0]i,p[Rave,0]
∗
g,h

]
(84)

for 0 ≤ i, p, g, h ≤ J − 1. Since the entries of vl for all l are
circularly-symmetric complex Gaussian, using Wick’s theorem
(or Isserlis’ theorem) [30], [31], we have

E
[
[vl]i[vl]

∗
p[vm]∗g[vm]h

]
= E

[
[vl]i[vl]

∗
p

]
E
[
[vm]∗g[vm]h

]
+ E

[
[vl]i[vm]∗g

]
E
[
[vl]

∗
p[vm]h

]
.

Hence, we can obtain the covariance

E
[
([R̂ave,0]i,p − [Rave,0]i,p)([R̂ave,0]g,h − [Rave,0]g,h)

∗]
=

1

KM2

M−1∑
l=0

M−1∑
m=0

E
[
[vl]i[vm]∗g

]
E
[
[vl]

∗
p[vm]h

]
(85)

=
1

KM2
tr
(
R(i,g)

yy (R(p,h)
yy )H

)
, (86)

where R
(i,g)
yy ∈ CM×M are submatrices of

Ryy,0 = Ryy

∣∣
δR=O

≜

R
(1,1)
yy · · · R

(1,J)
yy

...
. . .

...
R

(J,1)
yy · · · R

(J,J)
yy

 . (87)

Throughout the above derivations, we implicitly assume the
stopband sources have been nulled.

Then consider (16) and let E0 = [Es,0 En,0] and Λ0 =
diag(Λs,0,Λn,0). Define

U = K1/2(EH
0 R̂ave,0E0 −Λ0). (88)

Based on the multivariate central limit theorem and (86), we
can derive that U is asymptotically (for large K) complex
Gaussian with mean zero and covariance

E
[
[U]i,p[U]∗g,h

]
=

1

M2
tr
(
R̃(i,g)

yy (R̃(p,h)
yy )H

)
, (89)

where R̃
(i,g)
yy are as defined in (21). Let

V = K−1/2U+Λ0 = EH
0 R̂ave,0E0 (90)

and suppose that

V = QDVQH (91)

is the eigenvalue decomposition of V with eigenvalues in
descending order. We partition U and Q into

U =


u11 u12 · · · u1D0

uT
1e

u21 u22 · · · u2D0 uT
2e

...
...

. . .
...

...
uD01 uD02 · · · uD0D0

uT
D0e

ue1 ue2 · · · ueD0
Uee

 , (92)

Q =


q11 q12 · · · q1D0

qT
1e

q21 q22 · · · q2D0
qT
2e

...
...

. . .
...

...
qD01 qD02 · · · qD0D0 qT

D0e
qe1 qe2 · · · qeD0 Qee

 , (93)

where Uee,Qee ∈ C(J−D0)×(J−D0) and uie,uei,qie,qei ∈
CJ−D0 , i = 1, . . . , D0. Following the derivations in [13], we
can show that asymptotically (for large K), K1/2(qll − 1)
converges stochastically to 0, and the limiting distributions of
K1/2qil and K1/2qel are the same as the limiting distributions
of u∗

li/(λl,0 − λi,0) and u∗
le/(λl,0 − pe), 1 ≤ i, l ≤ D0, i ̸= l.

Using (90) and (91), we obtain

R̂ave,0 = (E0Q)DV(E0Q)H , (94)

which is the eigendecomposition of R̂ave,0. Hence, asymptot-
ically, the signal eigenvector estimates are

êl,0 = E0[Q]:,l (95)

= el,0 +K−1/2

[ D0∑
i=1
i ̸=l

[U]∗l,i
λl,0 − λi,0

ei,0 +
En,0u

∗
le

λl,0 − pe

]
(96)

= el,0 +K−1/2
J∑

i=1
i ̸=l

[U]∗l,i
λl,0 − λi,0

ei,0, (97)

l = 1, . . . , D0. Using (89) and (97), we obtain the statement
of the lemma. To obtain the relation matrices, we have also
used the fact that U is Hermitian symmetric.

APPENDIX B
PROOF OF THEOREM 1

Following the idea (Eq. (B.2a)) of [12], asymptotically (for
large K), the DOA estimates ω̂i of MUSIC based on (15)
satisfy

ω̂i − ωi ≈
−Re{aHJ (ω̃i)ÊnÊ

H
n ȧJ(ω̃i)}

M ȧHJ (ω̃i)EnEH
n ȧJ(ω̃i)

, (98)

where ω̃i = Mωi, ȧJ(ω) = d
dωaJ(ω), and the terms neglected

in the approximation are O(1/K). Besides, according to [8],
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root-MUSIC has the same asymptotic error expression (98).
Then in view of (17), for small ∥δR∥,

ȧHJ (ω̃i)EnE
H
n ȧJ(ω̃i) = ȧHJ (ω̃i)(I−EsE

H
s )ȧJ(ω̃i) (99)

≈ ȧHJ (ω̃i)(I−Es,0E
H
s,0)ȧJ(ω̃i) (100)

= ȧHJ (ω̃i)En,0E
H
n,0ȧJ(ω̃i), (101)

where the terms neglected in the approximation are O(∥δR∥).
Thus,

ω̂i − ωi ≈ −Re{aHJ (ω̃i)ÊnÊ
H
n ȧJ(ω̃i)}/(Mg(ω̃i)), (102)

where g(ω) = ȧHJ (ω)En,0E
H
n,0ȧJ(ω). Besides,

ÊnÊ
H
n = I− ÊsÊ

H
s (103)

≈ I− Ês,0Ê
H
s,0 −

D0∑
l=1

(
el,0δe

H
l + δele

H
l,0

)
(104)

= Ên,0Ê
H
n,0 −

D0∑
l=1

(
el,0δe

H
l + δele

H
l,0

)
(105)

where the terms neglected in the approximation are
O(∥δR∥2), and δel is defined in (26). Hence, for large K
and small ∥δR∥,

ω̂i − ωi = Bi −
Re{aHJ (ω̃i)Ên,0Ê

H
n,0ȧJ(ω̃i)}

Mg(ω̃i)
(106)

where Bi is defined in (25). Next, in view of (97), we can
write Ês,0 = Es,0 + Ξ̂, where ∥Ξ̂∥ = O(K−1/2). Therefore,
since aJ(ω̃i) lies in the signal subspace, we have

aHJ (ω̃i)Ên,0Ê
H
n,0 = aHJ (ω̃i)Es,0E

H
s,0Ên,0Ê

H
n,0 (107)

= aHJ (ω̃i)Es,0(Es,0 − Ês,0)
HÊn,0Ê

H
n,0 (108)

= −aHJ (ω̃i)Es,0Ξ̂
H(I− Ês,0Ê

H
s,0), (109)

where we used the fact that ÊH
s,0Ên,0 = O to obtain (108).

Replacing Ês,0 by Es,0 + Ξ̂ and neglecting O(1/K) terms,
we obtain

aHJ (ω̃i)Ên,0Ê
H
n,0 ≈ −aHJ (ω̃i)Es,0Ξ̂

H(I−Es,0E
H
s,0) (110)

= −aHJ (ω̃i)Es,0Ξ̂
HEn,0E

H
n,0 (111)

= −aHJ (ω̃i)Es,0Ê
H
s,0En,0E

H
n,0, (112)

where we used the fact that EH
s,0En,0 = O to obtain the last

equality. Substituting this into (106), we have

ω̂i − ωi = Bi + R̂i (113)

where

R̂i =
Re{aHJ (ω̃i)Es,0Ê

H
s,0En,0E

H
n,0ȧJ(ω̃i)}

Mg(ω̃i)
. (114)

Here we see that the DOA estimation errors ω̂i − ωi are
asymptotically (for large K) jointly Gaussian since the signal
eigenvector estimates in Ês,0 are jointly complex Gaussian due
to Lemma 1. Note that E

[
R̂i

]
= 0 because E

[
ÊH

s,0En,0

]
=

EH
s,0En,0 = O, so E[ω̂i − ωi] = Bi. Moreover,

E[(ω̂i − ωi)(ω̂k − ωk)]

= BiBk +Bi E
[
R̂k

]
+ E

[
R̂i

]
Bk + E

[
R̂iR̂k

]
(115)

= BiBk + E
[
R̂iR̂k

]
, (116)

where

E
[
R̂iR̂k

]
= E

[
Re{aHJ (ω̃i)

∑D0

l=1 el,0ê
H
l,0En,0E

H
n,0ȧJ(ω̃i)}

Mg(ω̃i)

·
Re{aHJ (ω̃k)

∑D0

r=1 er,0ê
H
r,0En,0E

H
n,0ȧJ(ω̃k)}

Mg(ω̃k)

]
.

Using the fact that Re{u}Re{v} = Re{uv + uv∗}/2 for any
u, v ∈ C, we obtain

E
[
R̂iR̂k

]
=

Re{γ1 + γ2}
2M2g(ω̃i)g(ω̃k)

, (117)

where

γ1 =

D0∑
l=1

D0∑
r=1

[
eHl,0aJ(ω̃i)a

H
J (ω̃k)er,0ȧ

H
J (ω̃i)

·En,0E
H
n,0 E

[
êl,0ê

H
r,0

]
En,0E

H
n,0ȧJ(ω̃k)

]
(118)

and

γ2 =

D0∑
l=1

D0∑
r=1

[
eHl,0aJ(ω̃i)a

T
J (ω̃k)e

∗
r,0ȧ

H
J (ω̃i)

·En,0E
H
n,0 E

[
êl,0ê

T
r,0

]
E∗

n,0E
T
n,0ȧ

∗
J(ω̃k)

]
. (119)

Using (18) and noting that EH
n,0ei,0 = 0 for i = 1, . . . , D0

and En,0E
H
n,0ei,0 = ei,0 for i = D0 + 1, . . . , J , we obtain

En,0E
H
n,0 E

[
êl,0ê

H
r,0

]
En,0E

H
n,0 = En,0BlrE

H
n,0/K, (120)

where Blr are as defined in (27). Similarly, using (19), we
obtain

En,0E
H
n,0 E

[
êl,0ê

T
r,0

]
E∗

n,0E
T
n,0 = En,0ClrE

T
n,0/K, (121)

where Clr are as defined in (28). Using (116)-(121), we finally
derive the expressions for covariance in the theorem statement.

APPENDIX C
PROOF OF THEOREMS 2 AND 3

In view of (44)–(48), we need to compute the derivative of
ryy with respect to each parameter in α. According to (5)–(7),
we have that

ryy = vec(Ryy) (122)

= vec

( D∑
i=1

D∑
k=1

Pi,kb(ωi)b
H(ωk) + peHHH

)
(123)

=

D∑
i=1

D∑
k=1

Pi,kb
∗(ωk)⊗ b(ωi) + pevec(HHH) (124)

=

D∑
i=1

pib
∗(ωi)⊗ b(ωi) + pevec(HHH)

+
∑
i>k

P
(r)
ik [b∗(ωk)⊗ b(ωi) + b∗(ωi)⊗ b(ωk)]

+
∑
i>k

jP
(i)
ik [b∗(ωk)⊗ b(ωi)− b∗(ωi)⊗ b(ωk)] (125)
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where b(ωi) = H(ejωi)ejωi(L−1)aN−L+1(ωi) for each i. We
used the fact that P is Hermitian symmetric to obtain (125).
Using (124), we can derive that[

∂ryy
∂ω1

· · · ∂ryy
∂ωD

]
= Ȧ∗

L ⊙ (ALDHPD∗
H)

+ (ALDHPD∗
H)∗ ⊙ ȦL, (126)

where ȦL is as in (52), and that

∂ryy
∂pe

= vec(HHH). (127)

Using (125), we can derive that

∂ryy
∂pi

= b∗(ωi)⊗ b(ωi) (128)

= [(ALDH)∗ ⊗ (ALDH)]:,(i−1)D+i (129)

for i = 1, . . . , D and

∂ryy

∂P
(r)
ik

= b∗(ωk)⊗ b(ωi) + b∗(ωi)⊗ b(ωk) (130)

= [(ALDH)∗ ⊗ (ALDH)]:,(k−1)D+i

+ [(ALDH)∗ ⊗ (ALDH)]:,(i−1)D+k (131)
∂ryy

∂P
(i)
ik

= jb∗(ωk)⊗ b(ωi)− jb∗(ωi)⊗ b(ωk) (132)

= j[(ALDH)∗ ⊗ (ALDH)]:,(k−1)D+i

− j[(ALDH)∗ ⊗ (ALDH)]:,(i−1)D+k (133)

for i > k. Hence, there exists a matrix T ∈ CD2×D2

such that[∂ryy
∂pi

]D

i=1

[
∂ryy

∂P
(r)
ik

]
i>k

[
∂ryy

∂P
(i)
ik

]
i>k


= [(ALDH)∗ ⊗ (ALDH)]T (134)

holds. More precisely, [T]:,i = δ
(D2)
(i−1)D+i for i = 1, . . . , D,

and the column of T corresponding to ∂ryy

∂P
(r)
ik

, ∂ryy

∂P
(i)
ik

are

δ
(D2)
(k−1)D+i + δ

(D2)
(i−1)D+k, jδ

(D2)
(k−1)D+i − jδ

(D2)
(i−1)D+k, (135)

respectively, for i > k. One can check that T is invertible. In
view of (43), the CRB (34) exists if and only if [G ∆1] has
full column rank. This proves Theorem 2 when we substitute
(126), (127), and (134) into (44) and (45) and note that (RT

yy⊗
Ryy)

−1/2 and T are invertible. Besides, (48) becomes

CRBunb(ω) =
1

K

(
GHΠ⊥

∆1
G
)−1

, (136)

where G is as in (50), and

∆1 =
(
RT

yy ⊗Ryy

)− 1
2

·
[
[(ALDH)∗ ⊗ (ALDH)]T vec(HHH)

]
. (137)

We finally obtain (49) by noting that Π⊥
∆1

= Π⊥
∆ since T is

invertible and does not alter the column space.
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