High Order Super Nested Arrays

Chun-Lin Liu¹ and P. P. Vaidyanathan²

Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu¹, ppvnath@systems.caltech.edu²

SAM 2016

Outline

1 Introduction (DOA, Sensor Arrays, ...)

- 2 Review of Super Nested Arrays
- 3 High Order Super Nested Arrays
- 4 Numerical Examples
- 5 Concluding Remarks

Outline

1 Introduction (DOA, Sensor Arrays, ...)

2 Review of Super Nested Arrays

3 High Order Super Nested Arrays

4 Numerical Examples

5 Concluding Remarks

DOA estimation in the presence of mutual coupling¹

We will develop new sparse arrays with less mutual coupling.

Liu and Vaidyanathan (Caltech)

¹ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

ULA and sparse arrays

ULA (not sparse)

- Identify at most N 1 uncorrelated sources, given N sensors.¹
- Can only find fewer sources than sensors.

Sparse arrays

- Minimum redundancy arrays²
- 2 Nested arrays³
- Coprime arrays⁴
- 4 Super nested arrays⁵
 - Identify O(N²) uncorrelated sources with O(N) physical sensors.
 - More sources than sensors!

Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

²Moffet, IEEE Trans. Antennas Propag., 1968.

³Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010.

⁴Vaidyanathan and Pal, IEEE Trans. Signal Proc., 2011.

⁵Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

Nested arrays¹

For sufficient number of snapshots, $(|\mathbb{U}|-1)/2 = O(N_1N_2)$ uncorrelated sources can be identified. $(\mathbb{U} = \text{Central ULA part of } \mathbb{D})$

Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010.

Outline

Review of Super Nested Arrays

3 High Order Super Nested Arrays

4 Numerical Examples

5 Concluding Remarks

Super nested arrays¹

- 1 Super nested arrays have the same number of sensors as nested arrays.
- 2 Super nested arrays have the same difference coarrays as nested arrays. In particular, no holes.
- 3 Super nested arrays are more sparse than nested arrays, i.e., super nested arrays have less mutual coupling.

Nested array $N_1 = 13, N_2 = 5.$

•••••••••••••••••***

Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

How to characterize mutual coupling in arrays?¹

The weight function w(m)

The number of sensor pairs with separation m.

Outline

3 High Order Super Nested Arrays

4 Numerical Examples

5 Concluding Remarks

Goal: Desired properties of super nested arrays

They should have the same number of sensors as nested arrays, $|S_{\text{High order super nested}}| = |S_{\text{Super nested}}| = |S_{\text{Nested}}|.$

They should be more sparse than nested arrays, wHigh order super nested $(1) \le w$ Super nested $(1) \le w$ Nested(1), wHigh order super nested $(2) \le w$ Super nested $(2) \le w$ Nested(2),

2D representations for 1D nested arrays¹

¹Liu and Vaidyanathan, *IEEE Trans. Signal Proc.*, 2016.

High order super nested arrays

The hierarchy of *Q*th-order super nested arrays¹

MATLAB routines are available at http://systems.caltech.edu/dsp/students/clliu/SuperNested.html

Liu and Vaidyanathan (Caltech)

Main properties of super nested arrays: 1) Difference coarray

¹ The lower bounds are given in the papers.

Main properties of super nested arrays: 2) Weight functions

	w(1)	w(2)	w(3)
Nested	N_1	$N_1 - 1$	$N_1 - 2$
Super nested	$\begin{cases} 2, & \text{if } N_1 \text{ is even}, \\ 1, & \text{if } N_1 \text{ is odd}. \end{cases}$	$\begin{cases} N_1 - 3, & \text{if } N_1 \text{ is even,} \\ N_1 - 1, & \text{if } N_1 \text{ is odd,} \end{cases}$	$\begin{cases} 3, & \text{if } N_1 = 4, 6, \\ 4, & \text{if } N_1 \text{ is even} \\ & N_1 \ge 8, \\ 1, & \text{if } N_1 \text{ is odd}, \end{cases}$
High order super nested $Q \ge 3$	$\begin{cases} 2, & \text{if } N_1 \text{ is even}, \\ 1, & \text{if } N_1 \text{ is odd}, \end{cases}$	$\begin{cases} 2 \lfloor N_1/4 \rfloor + 1, & \text{if } N_1 \text{ is odd,} \\ N_1/2 + 1, & \text{if } N_1 = 8k - 2, \\ N_1/2 - 1, & \text{if } N_1 = 8k + 2, \\ N_1/2, & \text{otherwise,} \end{cases}$	$\begin{cases} 5, & \text{if } N_1 \text{ is even,} \\ 2, & \text{if } N_1 \text{ is odd,} \end{cases}$

Outline

2 Review of Super Nested Arrays

3 High Order Super Nested Arrays

4 Numerical Examples

5 Concluding Remarks

Simulation procedure

¹ Pal and Vaidyanathan, *IEEE Trans. Signal Proc.*, 2010; Liu and Vaidyanathan, *IEEE Signal Proc. Lett.*, 2015.

MUSIC spectra (34 sensors, 30 sources)

Liu and Vaidyanathan (Caltech)

Outline

- 2 Review of Super Nested Arrays
- 3 High Order Super Nested Arrays
- 4 Numerical Examples

5 Concluding Remarks

Concluding remarks

- High order super nested arrays
 - They have the same number of sensors as (super) nested arrays.
 - They have the same difference coarray as (super) nested arrays if N₁ and N₂ are sufficiently large.
 - They have reduced mutual coupling than (super) nested arrays.
 - They can be constructed recursively from (super) nested arrays.
- In the future, decoupling algorithms will improve the performance.¹
- For more information, please go to our project website: http:// systems.caltech.edu/dsp/students/clliu/SuperNested.html

Thank you!

Friedlander and Weiss, IEEE Trans. Antennas Propag., 1991; BouDaher, Ahmad, Amin, and Hoorfar, EUSIPCO, 2015.

The data model (ideal)

$$\mathbf{x}_{\mathbb{S}} = \sum_{i=1}^{D} A_i \mathbf{v}_{\mathbb{S}} \left(\bar{\theta}_i \right) + \mathbf{n}_{\mathbb{S}},$$

- **S**: An integer set for the sensor locations, in units of $\lambda/2$.
- $\bar{\theta}_i = (d/\lambda) \sin \theta_i$: the normalized DOA ($-1/2 \le \bar{\theta}_i < 1/2$).
- A_i : The complex amplitude for the *i*th source.
- $\mathbf{v}_{\mathbb{S}}(\bar{\theta}_i) = [e^{j2\pi\bar{\theta}_i n}]_{n\in\mathbb{S}}$: steering vectors.

Statistical Assumptions

- A_i : zero mean, variance σ_i^2 .
- **n**_S: zero mean, covariance $\sigma^2 \mathbf{I}$.
- Sources are uncorrelated: $\mathbb{E}[A_i A_j^*] = \sigma_i^2 \delta_{i,j}$.
- Sources are uncorrelated to the noise: $\mathbb{E}[A_i \mathbf{n}_{\mathbb{S}}^H] = \mathbf{0}$.
- $\bar{\theta}_i$ is considered to be fixed but unknown.

The data model in the presence of mutual coupling¹

$$\mathbf{x}_{\mathbb{S}} = \sum_{i=1}^{D} A_i \mathbf{C} \mathbf{v}_{\mathbb{S}}(\bar{\theta}_i) + \mathbf{n}_{\mathbb{S}},$$

C: mutual coupling matrix satisfying

$$\langle \mathbf{C} \rangle_{n_1,n_2} = \begin{cases} c_{|n_1-n_2|}, & \text{if } |n_1-n_2| \le B, \\ 0, & \text{otherwise,} \end{cases}$$

- n_1 and n_2 are sensor locations.
- $\bullet 1 = c_0 > |c_1| > |c_2| > \cdots > |c_B|.$
- In this paper, we assume that $|c_k/c_\ell| = \ell/k$.
- Mutual coupling is a function of sensor separations.

Friedlander and Weiss, IEEE Trans. Antennas Propag., 1991.

The mutual coupling models in simulations

$$B = 100, \quad c_1 = 0.6e^{j\frac{\pi}{3}}, \quad c_\ell = \frac{c_1}{\ell}e^{-j\frac{\pi}{8}(\ell-1)}, \quad \text{for } \ell = 2, 3, \dots, B$$

Coefficients	c_1	C_2	c_3	c_4	C_5
Real Imaginary	$\begin{array}{c} 0.3000 \\ 0.5196 \end{array}$	$0.2380 \\ 0.1826$	$\begin{array}{c} 0.1932 \\ 0.0518 \end{array}$	$0.1487 \\ -0.0196$	$0.1039 \\ -0.0600$

Magnitudes of mutual coupling matrices, $|[\mathbf{C}]_{i,j}|$

Nested array

Second-order super nested array

Third-order super nested array

Liu and Vaidyanathan (Caltech)

Another mutual coupling model: King's formula¹

If the sensor array is a linear dipole array, C can be written as

 $\mathbf{C} = (Z_A + Z_L)(\mathbf{Z} + Z_L \mathbf{I})^{-1},$

where Z_A and Z_L are the element/load impedance, respectively. $\left< \mathbf{Z} \right>_{n_1,n_2}$ is given by $\begin{cases} \frac{\eta_0}{4\pi} \left(0.5772 + \ln(2\beta l) - \operatorname{Ci}(2\beta l) + j\operatorname{Si}(2\beta l) \right), & \text{if } n_1 = n_2, \\ \frac{\eta_0}{4\pi} \left(\left< \mathfrak{R} \right>_{n_1,n_2} + j \left< \mathfrak{X} \right>_{n_1,n_2} \right), & \text{if } n_1 \neq n_2. \end{cases}$

Here $\eta_0 = \sqrt{\mu_0/\epsilon_0} \approx 120\pi$ is the intrinsic impedance. $\beta = 2\pi/\lambda$ is the wavenumber, where λ is the wavelength. l is the length of dipole antennas. \Re and \mathfrak{X} are

$$\begin{split} \left< \Re \right>_{n_1,n_2} &= \sin(\beta l) \left(-\operatorname{Si}(u_0) + \operatorname{Si}(v_0) + 2\operatorname{Si}(u_1) - 2\operatorname{Si}(v_1) \right) \\ &+ \cos(\beta l) (\operatorname{Ci}(u_0) + \operatorname{Ci}(v_0) - 2\operatorname{Ci}(u_1) - 2\operatorname{Ci}(v_1) + 2\operatorname{Ci}(\beta d_{n_1,n_2}) \right) - \left(2\operatorname{Ci}(u_1) + 2\operatorname{Ci}(v_1) - 4\operatorname{Ci}(\beta d_{n_1,n_2}) \right) , \\ \left< \mathfrak{X} \right>_{n_1,n_2} &= \sin(\beta l) \left(-\operatorname{Ci}(u_0) + \operatorname{Ci}(v_0) + 2\operatorname{Ci}(u_1) - 2\operatorname{Ci}(v_1) \right) \\ &+ \cos(\beta l) (-\operatorname{Si}(u_0) - \operatorname{Si}(v_0) + 2\operatorname{Si}(u_1) + 2\operatorname{Si}(v_1) - 2\operatorname{Si}(\beta d_{n_1,n_2}) \right) + \left(2\operatorname{Si}(u_1) + 2\operatorname{Si}(v_1) - 4\operatorname{Si}(\beta d_{n_1,n_2}) \right) . \end{split}$$

 $\begin{array}{l} \text{where } d_{n_1,n_2} = |n_1 - n_2|\,\lambda/2 \text{ is the distance between sensors. The parameters } u_0, v_0, u_1, \text{ and } v_1 \text{ are} \\ u_0 = \beta \left(\sqrt{d_{n_1,n_2}^2 + l^2} - l \right), & v_0 = \beta \left(\sqrt{d_{n_1,n_2}^2 + l^2} + l \right), \\ u_1 = \beta \left(\sqrt{d_{n_1,n_2}^2 + 0.25l^2} - 0.5l \right), & v_1 = \beta \left(\sqrt{d_{n_1,n_2}^2 + 0.25l^2} + 0.5l \right). \end{array}$

Here $\operatorname{Si}(u) = \int_0^u \frac{\sin t}{t} dt$ and $\operatorname{Ci}(u) = \int_\infty^u \frac{\cos t}{t} dt$ are sine/cosine integrals.

¹King, IRE Trans. Antennas Propag., 1957.

Liu and Vaidyanathan (Caltech)

Properties of the weight functions $w(m)^1$

The weight function w(m)

The number of sensor pairs with separation m.

For any linear array with N sensors, weight functions satisfy 1 w(0) equals the total number of sensors, i.e.,

$$w(0) = N.$$

2 The sum of the weight functions is purely dependent on N.

$$\sum_{m \in \mathbb{D}} w(m) = N^2.$$

3 Weight functions are symmetric.

$$w(m) = w(-m),$$
 for $m \in \mathbb{D}$.

Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

Performance over SNR¹

 $\bar{\theta}_i = -0.45 + 0.9(i-1)/(D-1), 1000$ runs.

Performance over Snapshots¹

Performance over Number of sources¹

Performance over two closely spaced sources¹

Performance over mutual coupling models¹

10 sources, 34 sensors

0dB SNR, 500 snapshots, Toeplitz model, phases of c_ℓ are random. $\bar{\theta}_i = -0.45 + 0.9(i-1)/(D-1)$, 1000 runs.

¹Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

Liu and Vaidyanathan (Caltech)

Performance over mutual coupling models¹

20 sources, 34 sensors

0dB SNR, 500 snapshots, Toeplitz model, phases of c_ℓ are random. $\bar{\theta}_i = -0.45 + 0.9(i-1)/(D-1)$, 1000 runs.

¹Liu and Vaidyanathan, *IEEE Trans. Signal Proc.*, 2016.

Liu and Vaidyanathan (Caltech)

Performance over mutual coupling models¹

40 sources, 34 sensors

0dB SNR, 500 snapshots, Toeplitz model, phases of c_{ℓ} are random. $\bar{\theta}_i = -0.45 + 0.9(i-1)/(D-1)$, 1000 runs.

¹Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

Liu and Vaidyanathan (Caltech)