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Abstract—Mutual coupling between sensors has a negative
impact on the estimation of directions of arrival (DOAs). Sparse
arrays such as nested arrays, coprime arrays, and minimum
redundancy arrays (MRAs) have less mutual coupling than
uniform linear arrays (ULAs). These sparse arrays also have
a difference coarray of size O(N2), where N is the number of
sensors, and can therefore resolve O(N2) uncorrelated source
directions. The various sparse arrays proposed in the literature
have their pros and cons. The nested array is practical and easy
to use but has a dense ULA part which suffers from mutual
coupling effects like the traditional ULA. The recently introduced
super nested arrays reduce this mutual coupling problem, while
maintaining the desirable hole-free O(N2) difference coarray of
the nested array. In this paper, a generalization of super nested
arrays is introduced, called the Qth-order super nested array.
This has all the properties of the second-order super nested array
with the additional advantage that mutual coupling effects are
further reduced for Q > 2. A numerical example is included to
demonstrate the superior performance of these arrays.1

Index Terms—Sparse arrays, nested arrays, coprime arrays,
super nested arrays, mutual coupling, DOA estimation.

I. INTRODUCTION

IN array processing, mutual coupling between sensors has
an adverse effect on the estimation of parameters (e.g.,

DOA) [1]–[7]. Sparse arrays such as nested arrays [8], coprime
arrays [9], and minimum redundancy arrays (MRA) [10] have
reduced mutual coupling compared to uniform linear arrays
(ULAs). Sparse arrays also have a difference coarray with
O(N2) virtual elements, where N is the number of physical
sensors, and can therefore resolve O(N2) uncorrelated source
directions. But these sparse arrays have shortcomings: MRAs
do not have simple closed-form expressions for the array
geometry [10]; coprime arrays have holes in the coarray [9];
and nested arrays contain a dense ULA in the physical array
[8], resulting in significantly higher mutual coupling than
coprime arrays and MRAs.

The (second-order) super nested array was introduced in
[11], [12], which has many of the advantages of these sparse
arrays, while removing some of the disadvantages. Namely,
the sensor locations are well-defined and readily computed
for any N (unlike MRAs), and the difference coarray is
exactly that of a nested array, and therefore hole-free (unlike
coprime arrays). At the same time, the mutual coupling is
reduced compared to nested arrays. Super nested arrays were
designed by rearranging the dense ULA part of a nested array
in such a way that the coarray remains unchanged, but mutual
coupling is reduced by reducing the number of elements with
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small inter-element spacings. Quantitatively, this is described
in terms of the weight function w(m), which will be given
in Definition 2 later. It was proved in [12] that the first three
weight functions of second-order super nested arrays are

w(1) =

{
2, if N1 is even,
1, if N1 is odd,

(1)

w(2) =

{
N1 − 3, if N1 is even,
N1 − 1, if N1 is odd,

(2)

w(3) =


3, if N1 = 4, 6,

4, if N1 is even, N1 ≥ 8,

1, if N1 is odd,
(3)

Contrast this with the nested array which has w(1) =
N1, w(2) = N1 − 1 and w(3) = N1 − 2. While w(1) and
w(3) are significantly better in (1) and (3), there is plenty of
room for improving w(2), and possibly w(m),m > 3.

In this paper, a generalization of super nested arrays is
introduced, called the Qth-order super nested array. It has
all the good properties of the second-order super nested array
with the additional advantage that mutual coupling effects are
further reduced for Q > 2. For a given number of physical
array elements N , Qth-order super nested arrays have the
following properties: (a) the sensor locations can be defined
using a simple algorithm, (b) the physical array has the same
aperture as the nested array, (c) the difference coarray is
exactly identical to that of the nested array (hence hole free),
and (d) the weight functions are further improved, compared
even to second-order super nested arrays (Theorem 2).

II. PRELIMINARIES

Assume that D monochromatic far-field sources illuminate
the sensor array, where the sensor locations are nd. Here n
belongs to some integer set S, d = λ/2 denotes the minimum
distance between sensors, and λ is the wavelength. For the
ith source, its complex amplitude is written as Ai and its
direction-of-arrival (DOA) is denoted by θi ∈ [−π/2, π/2].
The measurement vector xS on the sensor array S can be
modeled as follows:

xS =

D∑
i=1

AivS
(
θ̄i
)

+ nS, (4)

where vS(θ̄i) = [ej2πθ̄in]n∈S are steering vectors and nS is
the additive noise term. θ̄i = (d/λ) sin θi is the normalized
DOA. We obtain −1/2 ≤ θ̄ ≤ 1/2. The parameters Ai and nS
are assumed to be zero-mean, uncorrelated random variables



with E[AiA
∗
j ] = σ2

i δi,j and E[nSn
H
S ] = σ2I. Here σ2

i is the
power of the ith source, σ2 is the noise power, and δp,q is the
Kronecker delta. θ̄i is considered to be fixed but unknown.

If there is mutual coupling, the data model becomes

xS =

D∑
i=1

AiCvS(θ̄i) + nS, (5)

where C is a mutual coupling matrix. The entries of C are

〈C〉n1,n2 =

{
c|n1−n2|, if |n1 − n2| ≤ B,
0, otherwise,

(6)

where 〈·〉 is the triangular bracket notation [13], n1, n2 ∈ S,
and the coupling coefficients c0, c1, . . . , cB satisfy 1 = c0 >
|c1| > |c2| > · · · > |cB |. It is assumed that the magnitudes of
coupling coefficients are inversely proportional to their sensor
separations [1], i.e. |ck/c`| = `/k.

For sparse arrays, the following definitions will be useful:

Definition 1 (Difference coarray). For an array specified by an
integer set S, its difference coarray D = {n1−n2|n1, n2 ∈ S}.

Definition 2 (Weight functions). The weight function w(m) of
an array S is defined as the number of sensor pairs that lead
to coarray index m, i.e., |{(n1, n2) ∈ S2 | n1 − n2 = m}|.

A restricted array is an array whose difference coarray D
is a ULA with adjacent elements separated by λ/2, or an
array with hole-free difference coarray. The uniform degree
of freedom (uniform DOF) is the cardinality of the central
ULA part of D, which is related to the limit of identifiable
sources. It was shown in [8], [14] that, if the uniform DOF is
F , the maximum number of uncorrelated sources that coarray
MUSIC can identify is (F − 1)/2.

Next, we will review some well-known sparse array configu-
rations, like minimum redundancy arrays (MRAs) [10], nested
arrays [8], coprime arrays [9], and super nested arrays [12]. All
these arrays can resolve O(N2) sources provided with O(N)
sensors and increase the spatial resolution [8]–[10].

MRAs [10] maximize their uniform DOF subject to a given
total number of sensors. However, it is not possible to obtain
explicit expressions of the sensor locations for arbitrary num-
ber of sensors [10], [15]. Nested arrays [8] and coprime arrays
[9], on the other hand, characterize their sensor locations in a
closed-form, simple, and scalable fashion. For nested arrays,
the sensor locations are given by

Snested = {1, 2, . . . , N1,

(N1 + 1), 2(N1 + 1), . . . N2(N1 + 1)} , (7)

where N1 and N2 are positive integers. The sensor locations
for coprime arrays are

Scoprime = {0,M, 2M, . . . , (N − 1)M,

N, 2N, . . . , (2M − 1)N} , (8)

where M and N are a coprime pair of positive integers.
These simple expressions facilitate the design process with
arbitrary number of sensors. However, the nested array has
severe mutual coupling, due to the dense ULA part [8],
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Fig. 1. Hierarchy of nested arrays, second-order super nested arrays S(2), and
Qth-order super nested arrays S(Q). Arrows indicate the origin of the given
sets. For instance, X(4)

2 originates from X(3)
2 while Y(3)

3 is split into Y(4)
3

and Y(4)
4 . It can be observed that the sets X(Q)

q and Y(Q)
q result from the

dense ULA part of nested arrays. The sparse ULA portion of nested arrays
is rearranged into the sets Z(Q)

1 and Z(Q)
2 .

[12]. The coprime array owns holes in the difference coarray,
which prevents us from using the full coarray in the MUSIC
algorithm [14]. The (second-order) super nested array aims to
overcome all the above issues, as mentioned in Section I. The
sensor locations for (second-order) super nested arrays are

S(2) = X(2)
1 ∪ Y(2)

1 ∪ X(2)
2 ∪ Y(2)

2 ∪ Z(2)
1 ∪ Z(2)

2 , (9)

where the sets X(2)
1 , Y(2)

1 , X(2)
2 , Y(2)

2 , and Z(2)
1 are ULAs. The

formal definition of S(2) can be found in [11], [12].

III. HIGH-ORDER SUPER NESTED ARRAYS

Fig. 1 summarizes the hierarchy among nested arrays,
second-order super nested arrays, and Qth-order super nested
arrays. It has been mentioned in [12] that the sets X(2)

1 , Y(2)
1 ,

X(2)
2 , and Y(2)

2 are obtained by rearranging the dense ULA
part of parent nested arrays. The sparse ULA part of parent
nested arrays is reorganized into Z(2)

1 and Z(2)
2 of second-order

super nested arrays [12]. High-order super nested arrays can
be obtained from the second-order ones, using some recursive
rules, as depicted in Fig. 1.

The formal definition of Qth-order nested arrays will be
given in Definition 3 later. To develop some feeling for it, first
consider Q = 3. Third-order super nested arrays, as specified
by the integer set S(3), consist of eight sets as follows: X(3)

1 ,
Y(3)

1 , X(3)
2 , Y(3)

2 , X(3)
3 , Y(3)

3 , Z(3)
1 , and Z(3)

2 , which can be
recursively generated from the sets X(2)

1 , Y(2)
1 , X(2)

2 , Y(2)
2 ,

Z(2)
1 , Z(2)

2 in second-order super nested arrays. For instance,
X(3)

1 is identical to X(2)
1 (Rule 1 in Definition 3). X(2)

2 is split
into two sets X(3)

2 and X(3)
3 (Rule 2 in Definition 3). The

same connections also apply to Y(2)
1 , Y(2)

2 , Y(3)
1 , Y(3)

2 , and
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Fig. 2. Array configurations of (a) second-order super nested arrays, S(2), and (b) third-order super nested arrays, S(3), where N1 = 13 and N2 = 6. Bullets
denote sensor locations while crosses indicate empty locations.

Y(3)
3 . Finally, the elements in Z(2)

1 and Z(2)
2 are rearranged

into Z(3)
1 and Z(3)

2 (Rule 3 in Definition 3). Hence, it can be
interpreted that the sets X(3)

q and Y(3)
q for q = 1, 2, 3 originate

from the dense ULA of parent nested arrays while Z(3)
1 and

Z(3)
2 emanate from the sparse ULA of parent nested arrays.
Fourth-order super nested arrays (or super nested arrays

with Q = 4) generalize third-order super nested arrays further.
It can be deduced from Fig. 1 that X(3)

3 and Y(3)
3 are divided

into X(4)
3 , X(4)

4 and Y(4)
3 , Y(4)

4 , respectively (Rule 2). Z(3)
1 and

Z(3)
2 are rearranged into Z(4)

1 and Z(4)
2 (Rule 3). The remaining

sets in fourth-order super nested arrays are the same as their
correspondences in third-order super nested arrays (Rule 1).

Next, we give a concrete example of how Qth-order super
nested arrays are obtained from (Q− 1)th-order super nested
arrays. Fig. 2 depicts the array configurations of the second-
order super nested array (in part (a)) and the third-order one
(in part (b)), respectively. In this example, it is obvious that
X(2)

1 = X(3)
1 and Y(2)

1 = Y(3)
1 , which satisfy Rule 1. To explain

Rule 2, we consider the following sets in Fig. 2:

X(2)
2 = {16, 18, 20}, X(3)

2 = {16, 20}, X(3)
3 = {32}. (10)

The middle element of X(2)
2 , which is the element 18 in this

case, is selected and relocated to the element 32 in X(3)
3 .

The remaining elements in X(2)
2 , which correspond to sensor

locations 16 and 20, constitute X(3)
2 . Finally, Rule 3 can also be

clarified using Fig. 2. In the second-order super nested array,
we consider the sensor located at 2(N1 + 1) = 28, which is
the leftmost element of Z(2)

1 . However, this sensor is removed
from S(2) and inserted to S(3) at location 67, as indicated by
a thick arrow in Fig. 2. This new sensor location is included
in Z(3)

2 = {67, 83}, which explains Rule 3. Furthermore, after
all these operations, the sensors between location 1 and 14 do
not change while only some elements (18, 24, and 28 in Fig.
2) between 15 and 28 are rearranged to somewhere else.

Summarizing, Qth-order super nested arrays can be recur-
sively generated from (Q − 1)th-order super nested arrays,
as elaborated in Fig. 1 and 2. Next, we will give a formal
definition for super nested arrays, by characterizing Rule 1, 2,
and 3. This definition also enables us to determine the sensor
locations explicitly.

Definition 3 (Qth-order super nested arrays). Let N1 be a
positive integer, N2 ≥ N2,min, and Q ≥ 3. Let S(2) be a
second-order super nested array, defined in (9). A Qth-order

super nested array is specified by the integer set S(Q),

S(Q) =

(
Q⋃
q=1

X(Q)
q ∪ Y(Q)

q

)
∪ Z(Q)

1 ∪ Z(Q)
2 ,

where N2,min is 2Q− 1 for odd N1 and 2Q otherwise. These
nonempty subsets X(Q)

q , Y(Q)
q , Z(Q)

1 , and Z(Q)
1 satisfy

1) (Rule 1) For 1 ≤ q ≤ Q− 2, X(Q)
q = X(Q−1)

q .
2) (Rule 2) X(Q)

Q−1 and X(Q)
Q can be obtained from X(Q−1)

Q−1 by

a) If N1 is odd, or the cardinality of X(Q−1)
Q−1 is odd, then

X(Q)
Q−1 = {Even terms of X(Q−1)

Q−1 },

X(Q)
Q = {(Odd terms of X(Q−1)

Q−1 ) + (N1 + 1)}.

b) Otherwise, we call the last element in X(Q−1)
Q−1 as the

extra term. Then

X(Q)
Q−1 = {Even terms of X(Q−1)

Q−1 } ∪ {the extra term},

X(Q)
Q = {(Odd terms of X(Q−1)

Q−1 , except the extra term)

+ (N1 + 1)}.

Y(Q)
q share similar properties as X(Q)

q in Rule 1 and 2.
3) (Rule 3) The sets Z(Q)

1 and Z(Q)
2 are given by

Z(Q)
1 = Z(Q−1)

1 \{(Q−1)(N1+1)},
Z(Q)

2 = Z(Q−1)
2 ∪ {(N2+1−(Q−1))(N1+1)−2Q−1+1},

where A\B denotes the relative complement of B in A.

A MATLAB code to find the sensor locations of Qth-order
super nested arrays is given in [16].

Next, we will clarify Rule 2 in Definition 3. Let N1 = 16
and N2 = 5 in super nested arrays. According to [12], the
second-order super nested array has X(2)

2 = {19, 21, 23, 25}.
Since N1 is even and the cardinality of X(2)

2 is 4, Rule 2b is
applicable. For X(2)

2 , the extra term is 25, the even terms (the
first, third smallest ones and so on) are 19 and 23, and the
odd terms (the second, fourth smallest ones and so on) are
21 and 25. Using the expressions in Rule 2b of Definition 3,
we obtain X(3)

2 = {19, 23, 25} and X(3)
3 = {38}. On the other

hand, if we consider Y(2)
2 = {28, 30, 32}, then the cardinality

of Y(2)
2 becomes 3, implying Rule 2a is applicable. Note that

for Y(2)
2 , the largest term is an even term, the second largest

term is an odd term, and so on. Hence, the even terms and
odd terms of Y(2)

2 are 28, 32 and 30, respectively. As a result,
Y(3)

2 = {28, 32} and Y(3)
3 = {47}.



IV. COARRAY PROPERTIES

One of the most striking properties of the Qth-order super
nested array is that the coarray is exactly identical to that of
the parent nested array [17]:

Theorem 1. If N1 ≥ N1,min, N2 ≥ 3Q− 4, and Q ≥ 3, then
Qth-order super nested arrays are restricted arrays, i.e., the
difference coarray is hole-free, where N1,min is given by

N1,min =

{
2 · 2Q + 2, if N1 is even,
3 · 2Q − 1, if N1 is odd.

(11)

Corollary 1. If N1 ≥ N1,min, N2 ≥ 3Q−4, and Q ≥ 3, then
Qth-order super nested arrays have the same coarray as their
parent nested array, where N1,min is defined in (11).

Recall that the weight function w(2) of the second-order
super nested array was as in Eq. (2). The next theorem shows
that the super nested array for Q > 2 has significantly
improved weight function w(2), which is crucial to reducing
the mutual coupling effects [17]:

Theorem 2. Assume that N1 ≥ N1,min, N2 ≥ 3Q − 4, and
Q ≥ 3, where N1,min is defined in (11). The weight function
w(m) of Qth-order super nested arrays satisfies

w(1) =

{
2, if N1 is even,
1, if N1 is odd,

w(3) =

{
5, if N1 is even,
2, if N1 is odd,

w(2) =


2 bN1/4c+ 1, if N1 is odd,
N1/2 + 1, if N1 = 8k − 2,

N1/2− 1, if N1 = 8k + 2,

N1/2, otherwise,

where k is an integer.

As we can see, the Qth-order super nested array has the
same w(1) as the second-order one, while w(2) of the Qth-
order super nested array is approximately half of that of the
second-order one.

V. NUMERICAL EXAMPLES

In this section, we make a comparison among nested arrays,
coprime arrays, and super nested arrays when mutual coupling
is present. The total number of sensors is 34 for each array.
The nested array and the super nested arrays have parameters
N1 = N2 = 17. We choose M = 9, N = 17 in the coprime
array. For super nested arrays, there are two different cases:
the second-order one and the third-order one (Q = 3). The
sensor locations for these arrays are given by (7) for the
nested array, (8) for the coprime array, Definition 7 in [12]
for the second-order super nested array, and Definition 3 for
the super nested array with Q = 3. The remaining parameters
are listed in the caption of Fig. 3. The spectra in Fig. 3 are
evaluated as follows: The measurements are influenced by the
mutual coupling matrix, as in (5), and the spatial smoothing
MUSIC algorithm [8], [13], [14] is utilized directly from the
data without using any decoupling algorithms. To compare
the result quantitatively, the root-mean-squared error (RMSE)
is defined as E = (

∑D
i=1 (ˆ̄θi − θ̄i)2/D)1/2, where ˆ̄θi denotes
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(d) Third-order super nested, D = 30, E = 0.00015819.
Fig. 3. The MUSIC spectra P (θ̄) for (a) nested arrays, (b) coprime arrays, (c)
second-order super nested arrays, and (d) third-order super nested arrays when
D = 30 sources are located at θ̄i = −0.25+0.5(i−1)/19, i = 1, 2, . . . , 30,
as depicted by ticks and vertical lines. The horizontal axis is the normalized
DOA θ̄. The SNR is 0 dB while the number of snapshots is K = 200.
The mutual coupling is based on (6) with c1 = 0.6ejπ/3, B = 100, and
c` = c1e−j(`−1)π/8/` for 2 ≤ ` ≤ B.

the estimated normalized DOA of the ith source, calculated
from the root MUSIC algorithm, and θ̄i is the true normalized
DOA. The best estimation performance is enjoyed by the super
nested array with Q = 3, followed by the second-order super
nested array, then the coprime array, and finally the nested
array. Furthermore, only the super nested array with Q = 3
displays 30 peaks, without any missing targets or spurious
peaks. This example shows that, in the presence of mutual
coupling, Qth-order super nested arrays can be superior to
nested arrays, coprime arrays, and second-order super nested
arrays, even when no decoupling algorithms are employed.

VI. CONCLUDING REMARKS

In this paper, we presented an extension of super nested
arrays, called the Qth-order super nested arrays. These arrays
preserve all the properties of nested arrays, while significantly
reducing the effects of mutual coupling between sensors, by
decreasing the number of sensor pairs with small separation.
In the future, it will be of interest to extend linear super
nested arrays to the case of planar arrays. These extensions
are currently under investigation.
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