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Abstract

Linear (1D) sparse arrays such as nested arrays and minimum redundancy arrays have hole-free difference coarrays

with O(N2) virtual sensor elements, where N is the number of physical sensors. The hole-free property makes it

easier to perform beamforming and DOA estimation in the coarray domain which behaves like an uniform linear

array. The O(N2) property implies that O(N2) uncorrelated sources can be identified. For the 2D case, planar

sparse arrays with hole-free coarrays having O(N2) elements have also been known for a long time. These include

billboard arrays, open box arrays (OBA), and 2D nested arrays. Their merits are similar to those of the 1D sparse

arrays mentioned above, although identifiability claims regarding O(N2) sources have to be handled with more care

in 2D. This paper introduces new planar sparse arrays with hole-free coarrays having O(N2) elements just like

the OBA, with the additional property that the number of sensor pairs with small spacings such as λ/2 decreases,

reducing the effect of mutual coupling. The new arrays include half open box arrays (HOBA), half open box arrays

with two layers (HOBA-2), and hourglass arrays. Among these, simulations show that hourglass arrays have the best

estimation performance in presence of mutual coupling.

Index Terms

Nonseparable 2D sparse arrays, open box arrays, hourglass arrays, mutual coupling, DOA estimation.

I. INTRODUCTION

Planar (2D) arrays find useful applications in beamforming, radar, imaging, and communications [2]–[4]. They

can jointly estimate the azimuth and elevation of sources [2]. Some well-known 2D array geometries include

uniform rectangular arrays (URA), uniform circular arrays (UCA), and hexangonal arrays, in which elements are

placed uniformly on regular contours [2]. However, these array configurations usually suffer from significant mutual

coupling, resulting in considerable interferences between sensor outputs [5], [6].

It is well-known that large sensor separations help to reduce the mutual coupling effect [5], [6]. Hence, linear

(1D) sparse arrays, in which the number of sensor pairs with small separations is much smaller than in uniform

linear arrays (ULA), are more robust to mutual coupling [7]. Examples of linear sparse arrays include minimum
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Fig. 1. The array geometry of (a) open box arrays (OBA) and (b) hourglass arrays, in units of half of the wavelength (λ/2). Definition 3 and 8

give the formal description. The parameters are Nx = 13 and Ny = 19. Red and blue bullets represent physical sensors while crosses denote

empty space.

redundancy arrays (MRA) [8], nested arrays [9], coprime arrays [10], super nested arrays [7], [11], and other

generalizations [12]–[14]. Among these, super nested arrays and coprime arrays are significantly robust to mutual

coupling effects because they have very few sensor pairs with small separations. Super nested arrays have an

additional advantage over coprime arrays because the coarrays are filled (hole-free). Unlike MRAs which share the

hole-free property, the sensor locations in a super nested array also have a simple closed form.

Planar arrays with hole-free difference coarrays (that is, coarrays that are URAs), are important for several

reasons. First, if the coarrays have O(N2) elements, then O(N2) uncorrelated DOAs can be identified under some

restrictions on the DOA locations [15]1. Second, there is evidence from the literature on 2D arrays [17], [18] that

sparse arrays with hole-free coarrays produce better responses in beamforming applications. Finally, when DOA

estimation algorithms such as MUSIC and ESPRIT are used directly on the sparse array, they do not work well, as

they create ambiguities [19], [20]. However, if these algorithms are used on the ULA or URA part of the coarray

domain (e.g., using spatial smoothing), they work very well [9], [10], [13]–[15], [21], [22]. For these reasons, we

focus on the design of 2D sparse arrays with coarrays which are URAs with O(N2) elements.

For 2D arrays, it is desirable to have closed-form sensor locations, large and hole-free difference coarrays, and

less mutual coupling, like 1D super nested arrays. However, such 2D arrays are not fully explored in the literature.

Some existing designs enjoy closed-form sensor locations with hole-free coarrays, including billboard arrays, 2D

nested arrays, and open box arrays (OBA) [17], [18], [23], [24]. Hence, inspired by [16], one can expect that these

2D sparse arrays could distinguish more sources than sensors almost surely. Nevertheless, none of them takes the

mutual coupling issue into account.

In this paper, we will develop some new 2D sparse arrays that decrease mutual coupling effects in OBA. These

novel array configurations include half open box arrays (HOBA), half open box arrays with two layers (HOBA-2),

1For arbitrary source locations, the O(N2) result is not as strong as in the 1D case because, identifiability in 2D can only be guaranteed in

an almost sure sense [16].



3

and hourglass arrays. By redistributing the sensors in OBA systematically, these arrays are guaranteed to have the

same number of sensors as OBA, and to possess hole-free coarrays with enhanced degrees of freedom (Theorem

1, 2, 3, and 4), which makes it possible to detect more sources than sensors. Moreover, it will be shown that

the number of sensor pairs with small spacing (λ/2 and
√

2λ/2) decreases considerably (Table I), indicating that

mutual coupling effect decreases significantly.

Fig. 1 offers a first glance of (a) OBA and (b) hourglass arrays. The array geometry for OBA resembles the side

view of a box with an open top. The sensor locations for hourglass arrays resemble an hourglass with two pillars

on both sides. The closed-form sensor locations for these arrays will be shown in Defintion 3 and 8, respectively.

In this example, it can be shown that both arrays have 49 physical sensors and hole-free coarrays. However, in

OBA, there are 12 sensor pairs with separation (λ/2, 0) and 36 pairs with separation (0, λ/2). On the other hand,

in hourglass arrays, there are only 2 sensor pairs with separation (λ/2, 0) and 8 pairs with spacing (0, λ/2), which

are much smaller than those in OBA. This property makes hourglass arrays more robust to mutual coupling effects,

as demonstrated in Section VIII. All these properties will be given in depth later.

This paper is outlined as follows. Section II reviews the data model and several well-known 2D arrays, like

URA, billboard arrays, 2D nested arrays, and OBA. In Section III, the horizontal segment in OBA is generalized

into partially open box arrays (POBA) and half open box arrays (HOBA). Section IV extends POBA to POBA

with L layers (POBA-L) by designing the vertical segments in POBA properly. Section V and VI propose HOBA

with two layers (HOBA-2), and hourglass arrays, respectively, based on the theory developed in Section IV. For

all these 2D arrays, the expression for the weight functions with small separations are listed in Section VII with

detailed derivation. Section VIII demonstrates the superior performance of the proposed arrays in the presence of

mutual coupling while Section IX concludes this paper.

For the reader’s convenience, [25] provides a MATLAB function POBA_L.m, which takes some descriptive pa-

rameters of the array as inputs and returns the sensor locations as outputs. Furthermore, interactive_interface.m

offers an interactive panel where users can readily design their array geometries and visualize the weight functions.

II. PRELIMINARIES

A. The Data Model

Suppose D uncorrelated sources impinge on a 2D array, whose sensors are located at nd. Here n = (nx, ny) ∈ Z2

is an integer-valued vector and d = λ/2 is the minimum separation between sensors. The sensor locations n form

a set S. The ith source has complex amplitude Ai ∈ C, azimuth φi ∈ [0, 2π], and elevation θi ∈ [0, π]. If mutual

coupling is absent, the sensor output on S can be modeled as

xS =

D∑
i=1

AivS(θ̄i, φ̄i) + nS, (1)

where θ̄i = (d/λ) sin θi cosφi and φ̄i = (d/λ) sin θi sinφi are the normalized DOA. The element of the steering

vector vS(θ̄i, φ̄i) corresponding to the sensor at (nx, ny) ∈ S is ej2π(θ̄inx+φ̄iny). Signals and noise are assumed

to be zero-mean and uncorrelated. That is, E[Ai] = 0,E[nS] = 0,E[AiA
∗
j ] = σ2

i δi,j ,E[nSn
H
S ] = σ2I,E[Ain

H
S ] = 0,

where σ2
i and σ2 are the ith source power and the noise power, respectively. δp,q is the Kronecker delta.
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For uncorrelated sources, the covariance matrix of xS can be expressed as

RS = E[xSx
H
S ] =

D∑
i=1

σ2
i vS(θ̄i, φ̄i)v

H
S (θ̄i, φ̄i) + σ2I. (2)

Vectorizing (2) and removing duplicated entries yield the signal on the difference coarray [9], [21], [26], [27]:

xD =

D∑
i=1

σ2
i vD(θ̄i, φ̄i) + σ2e0, (3)

where e0 is a column vector with 〈e0〉(nx,ny) = δnx,0δny,0. The bracket notation 〈xS〉n [27] denotes the value

of the signal at the support location n ∈ S. For instance, if S = {(0, 0), (1, 0), (0, 1)} and xS = [4, 5, 6]T , then

〈xS〉(0,0) = 4, 〈xS〉(1,0) = 5, and 〈xS〉(0,1) = 6. D is the difference coarray, which is defined as

Definition 1 (Difference coarray): For a 2D array specified by S, its difference coarray D is defined as the

differences between sensor locations:

D = {n1 − n2 | n1,n2 ∈ S}.

For example, if S consists of (0, 0), (1, 0), (2, 0), (0, 1), (2, 1), (0, 2), (2, 2), then the difference coarray D is

composed of integer vectors (mx,my) such that −2 ≤ mx,my ≤ 2. The uniform rectangular part of D is denoted

by U. In this example, D = U, and such array is said to have a hole-free coarray. More generally, if the coarray is

the set of all integer vectors within a parallelepiped, we can regard it as hole-free, but we shall not consider this

extension here.

If mutual coupling is present, the data model (1) becomes

xS =

D∑
i=1

AiCvS(θ̄i, φ̄i) + nS, (4)

where C is the mutual coupling matrix [5], [28]–[30]. In this paper, we assume that the entries of C can be

characterized by [5]

〈C〉n1,n2
=

c(‖n1 − n2‖2), if ‖n1 − n2‖2 ≤ B,

0 otherwise,
(5)

where n1,n2 ∈ S denote the sensor locations. Here ‖·‖2 is the `2-norm of a vector and c(·) are the mutual coupling

coefficients. It is assumed that c(0) = 1 and |c(k)/c(`)| = `/k for k, ` > 0 [5], implying that the arrays with larger

sensor separations, like sparse arrays, tend to reduce mutual coupling. To quantify mutual coupling, we first define

the weight function:

Definition 2 (Weight function): Let a 2D array be specified by S, and let its difference coarray be D. The weight

function w(m) is the number of pairs with separation m ∈ D, i.e.,

w(m) =
∣∣{(n1,n2) ∈ S2 | n1 − n2 = m}

∣∣ .
We will use w(m) and w(mx,my) interchangeably, where m = (mx,my). It was shown in [7] that, qualitatively,

smaller weight functions at small sensor separations reduce the effect of mutual coupling significantly.
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(d)

Fig. 2. Examples of 2D arrays with N = 36 elements. Bullets denote physical sensors and crosses represent empty space. The minimum

separation between sensors is λ/2.

B. Known Closed-Form 2D Sparse Arrays

In this subsection, we will review some known 2D arrays on rectangular grids with regular geometries, in Fig.

2.

The URA places NxNy sensors on an Ny-by-Nx rectangular grid, as demonstrated in Fig. 2(a) for 36 sensors.

The billboard array [23] consists of three ULA on a square aperture (Nx = Ny) and the total number of sensors

is 3(Nx − 1), as in Fig. 2(b). The 2D nested array [24] is depicted in Fig. 2(c). In this example, this array is the

cross product of two identical 1D nested arrays with N1 = N2 = 3 (notation as in [9]) and the number of sensors

is (N1 +N2)2. Finally, the open box array [17] assigns Nx + 2Ny − 2 sensors on the boundaries of a rectangular

aperture, as illustrated in Fig. 2(d). The definition of OBA is also given by2

Definition 3 (Open box arrays, OBA): Let Nx and Ny be positive integers. An open box array is characterized

by the integer set SOBA, defined by

SOBA ={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}

∪G1 ∪H1 ∪H2,

where G1 = {(nx, 0) | nx ∈ g1}, H1 = {(0, ny) | ny ∈ h1}, and H2 = {(Nx − 1, ny) | ny ∈ h2}. Here

g1 = {1, 2, . . . , Nx − 2} and h1 = h2 = {1, 2, . . . , Ny − 2}.

2In this paper, the sensor locations are defined formally, as in Definition 3. This helps to develop novel array configurations systematically

and to compute the sensor locations readily [25].
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Fig. 2(d) marks the sets G1, H1, and H2 in rectangles on the bottom, on the left, and on the right, respectively.

Furthermore, the difference coarray of OBA is given as

DOBA = {(mx,my) ∈ Z2 | −Nx + 1 ≤ mx ≤ Nx − 1,

−Ny + 1 ≤ my ≤ Ny − 1}, (6)

which is exactly a uniform rectangular region.

All of the arrays in Fig. 2 have 36 physical sensors and hole-free coarrays (D = U). However, the sizes of

difference coarrays are different. The largest |D| is exhibited by the OBA (651), followed by the billboard array

(625), the 2D nested array (529), and finally the URA (121). Empirically, larger |D| is more likely to offer better

spatial resolution and more resolvable uncorrelated sources, so that in Fig. 2, the OBA is preferred.

Weight functions with small separations, such as w(1, 0), w(0, 1), w(1, 1), and w(1,−1), are also listed in Fig.

2. Notice that for the arrays mentioned herein, these weights are not small. For instance, the OBA has w(1, 0) = 15

and w(0, 1) = 20, due to the dense ULA on the boundaries. It is desirable to reduce w(1, 0), w(0, 1), w(1, 1), and

w(1,−1) simultaneously, so that mutual coupling can be mitigated.

III. GENERALIZATION OF G1 IN OBA

In this section, we will develop generalizations of OBA. The reason why we start with OBA is that, based on

Fig. 2, they have the largest aperture for the same number of sensors, leading to the best spatial resolution.

A. Partially Open Box Arrays (POBA)

The main idea of partially open box arrays (POBA) is to redistribute the elements in the dense ULA, so that

the weight functions for small separations decrease. In this section, we focus on the set G1 ∪ {(0, 0), (Nx− 1, 0)},
i.e., the Nx sensors on the bottom of Fig. 2(d). These sensors contribute to the weight function w(1, 0). If we can

relocate some of these sensors, it is possible to reduce w(1, 0).

However, if we move these sensors arbitrarily, the difference coarray would no longer be hole-free and the

estimation performance is degraded. Before we explain how to keep the difference coarray intact, we consider the

following notations: Let SOBA be an OBA with sizes Nx and Ny , as in Definition 3, and let DOBA, as in (6), be

the difference coarray. Assume we select P distinct sensors, located at (np, 0) ∈ SOBA for p = 1, 2, . . . , P and

P < Nx, These sensors are relocated to P distinct locations, (ap, bp) /∈ SOBA, yielding a new 2D array S′ and its

coarray D′. Then we have the following lemma:

Lemma 1: DOBA = D′ only if 1 ≤ ap ≤ Nx − 2 and 1 ≤ bp ≤ Ny − 1 for all p = 1, 2, . . . , P , i.e., only if the

new sensor locations are inside the original array aperture.

Proof: See Appendix A.

We can exculde ap = 0, Nx − 1 or bp = 0 in Lemma 1, since by assumption, (ap, bp) /∈ SOBA.

Lemma 2: DOBA =D′ only if (0, 0) ∈ S′ and (Nx− 1, 0) ∈ S′, where all notations are as stated before Lemma 1.

Proof: See Appendix B.
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Fig. 3. Examples of POBA with Nx = 16 and Ny = 11. (a) g1 = {1, 2, 3, 5, 6, 7, 9, 13}, g2 = {1, 3, 4, 5, 7, 11}, and (b) g1 = g2 =

{1, 3, 5, 7, 9, 11, 13}. In both cases, g2 satisfies Theorem 1.

Lemma 1 and 2 indicate that for the sensors located on the bottom of OBA, only those at (n, 0), where 1 ≤ n ≤
Nx − 2, can be redistributed within the original aperture. For simplicity, we assume all the new sensor locations

have y coordinate Ny − 1, i.e., bp = Ny − 1 for all p in Lemma 1, which leads to the definition of POBA:

Definition 4 (Partially open box arrays, POBA): For two positive integers Nx and Ny , a partially open box array

has the sensor locations defined by the integer set SPOBA,

SPOBA ={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}

∪G1 ∪G2 ∪H1 ∪H2,

where G1 = {(nx, 0) | nx ∈ g1}, G2 = {(nx, Ny − 1) | nx ∈ g2}, H1 = {(0, ny) | ny ∈ h1}, H2 = {(Nx −
1, ny) | ny ∈ h2}. Here g1, g2, h1, and h2 satisfy

1) g1 and g2 are subsets of {1, 2, . . . , Nx − 2}.
2) |g1|+ |g2| = Nx − 2.

3) h1 = h2 = {1, 2, . . . , Ny − 2}.

Note that sample MATLAB codes for POBA and all the proposed array geometries can be found in [25]. To

give some feeling for POBA, let us consider two examples in Fig. 3, where Nx = 16, Ny = 11 and the sets G1,

G2, H1, and H2 are marked in rectangles. Fig. 3(a) illustrates the POBA with g1 = {1, 2, 3, 5, 6, 7, 9, 13} and

g2 = {1, 3, 4, 5, 7, 11}, which are subsets of {1, 2, . . . , 14}. Furthermore, |g1| + |g2| = 8 + 6 = 14 satisfies the

second item in Definition 4. Fig. 3(b) also satisfies Definition 4. The missing elements (crosses) in G1 migrate to

the elements (bullets) in G2.
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Next, we will develop the difference coarray of POBA. The following theorem states a necessary and sufficient

condition under which OBA and POBA share the same hole-free difference coarray:

Theorem 1: Consider an open box array and a partially open box array with the same Nx and Ny , as defined

in Definition 3 and 4, respectively. Then, their difference coarrays are identical if and only if {g1, Nx − 1 − g2}
is a partition of {1, 2, . . . , Nx − 2}, i.e., if and only if 1) g1 ∪ (Nx − 1− g2) = {1, 2, . . . , Nx − 2} and 2) g1 and

Nx − 1− g2 are disjoint. Here Nx − 1− g2 = {Nx − 1− g | ∀ g ∈ g2}.
Proof: See Appendix C.

Let us consider some examples of Theorem 1. OBA are special cases of POBA with g1 = {1, 2, . . . , Nx − 2}
and g2 being the empty set, which satisfy Theorem 1. For POBA in Fig. 3, the corresponding g1 and g2 also satisfy

Theorem 1, so their difference coarrays are hole-free, and the same as DOBA.

Furthermore, Theorem 1 offers simple and straightforward design methods for POBA with hole-free difference

coarrays. The first step is to choose g1 to be a subset of {1, 2, . . . , Nx − 2}. Next, g2 can be uniquely determined

since {g1, Nx − 1− g2} is a partition of {1, 2, . . . , Nx − 2}. Finally, the closed-form sensor locations are given in

Definition 4. The freedom in the choice of such g1 can be exploited to reduce mutual coupling effects as explained

next.

B. Half Open Box Arrays (HOBA)

In this subsection, we will study the half open box array (HOBA), which is a particular instance of POBA with

reduced mutual coupling. This is done by setting g1 and g2 to be ULA with separation 2, so that the weight function

w(1, 0) is as small as 2. HOBA are defined as:

Definition 5 (Half open box arrays, HOBA): The half open box array with parameters Nx and Ny is a partially

open box array with

g1 = {1 + 2` | 0 ≤ ` ≤ b(Nx − 3)/2c}, (7)

g2 = {Nx − 1− 2` | 1 ≤ ` ≤ b(Nx − 2)/2c}. (8)

According to (7), g1 represents an ULA whose left-most element is 1 and the interelement spacing is 2. It can

be shown that (7) and (8) meet Theorem 1, so that the difference coarray of HOBA is the same as that of OBA,

and hence, hole-free. The sensor positions for HOBA can also be obtained from Defintion 4 and 5 readily, even

for large Nx and Ny .

Fig. 3(b) illustrates the HOBA with Nx = 16 and Ny = 11. It can be seen that, |g1| = |g2| = 7 and the weight

functions for Fig. 3(b) are listed as follows:

w(1, 0)=2, w(0, 1)=20, w(1, 1)=1, w(1,−1)=1. (9)

Compared to the OBA in Fig. 2(d), w(1, 0) decreases from 15 to 2 while w(0, 1), w(1, 1), and w(1,−1) remain

the same. To be more precise, the weight functions w(1, 0), w(0, 1), w(1, 1), w(1,−1) are listed in Table I and the

associated derivation can be found in Section VII-A. Therefore, the estimation performance for HOBA would be

better than OBA in the presence of mutual coupling, since the weight function w(1, 0) for HOBA is significantly

smaller.
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Fig. 4. Examples of POBA-L. Nx = 16, Ny = 11, g1 = g2 = {1, 3, 5, 7, 9, 11, 13}. (a) h1,1 = {1, 3, 5, 7, 9}, h1,2 = {2, 4, 6, 8}, L = 2,

and (b) h1,1 = {1, 2, 4, 6, 8, 9}, h1,2 = {3, 7}, h1,3 = {5}, L = 3.

IV. REORGANIZATION OF H1 AND H2 IN OBA

In Section III, the set G1 was reorganized into G1 and G2, so that the weight function w(1, 0) decreases. However,

the mutual coupling effect also depends on other weight functions with small separations, such as w(0, 1), w(1, 1),

and w(1,−1). In this section, we will develop generalizations of H1 and H2 such that the new arrays are guaranteed

to have hole-free coarrays. These generalizations also provide some insights to achieve smaller w(0, 1), w(1, 1),

and w(1,−1).

To begin with, let us consider HOBA, as shown in Fig. 3(b). If we redistribute the sensors in H1 and H2, it is

possible to reduce the weight function w(0, 1). Fig. 4 depicts some extensions of HOBA. In Fig. 4(a), H1 is split

into two layers, H1,1 and H1,2. Such rearrangement eliminates some sensor pairs with separation (0, 1) in HOBA,

like the sensor pair of (0, 2) and (0, 1). Fig. 4(b) extends H1 and H2 into three layers, H1,1, H1,2, H1,3, and H2,1,

H2,2, H2,3, respectively. In particular, the weight functions w(0, 1), w(1, 1), and w(1,−1) are listed as follows:

Fig. 3(b): w(0, 1) = 20, w(1, 1) = 1, w(1,−1) = 1,

Fig. 4(a): w(0, 1) = 4, w(1, 1) = 9, w(1,−1) = 9,

Fig. 4(b): w(0, 1) = 8, w(1, 1) = 5, w(1,−1) = 5,

It can be deduced that the arrays in Fig. 4 enjoy smaller w(0, 1) than that in Fig. 3(b). Note that smaller w(1, 0)

and w(0, 1) are typically more important in mutual coupling models [7]. Besides, it will be shown later that the

arrays in Fig. 4 own hole-free coarrays.
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The arrays in Fig. 4 generalize the set H1 and H2 into multiple layers H1,` and H2,`. This concept allows us to

define partially open box arrays with L layers (POBA-L) as follows:

Definition 6 (Partially open box arrays with L layers, POBA-L): For two positive integers Nx and Ny and a

positive integer L ≤ Nx/2, a partially open box array with L layers has the sensor locations defined by the integer

set SPOBA-L,

SPOBA-L={(0, 0), (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1)}

∪G1 ∪G2 ∪
(

L⋃
`=1

H1,` ∪H2,`

)
,

where G1 = {(nx, 0) | nx ∈ g1}, G2 = {(nx, Ny − 1) | nx ∈ g2}, H1,` = {(` − 1, ny) | ny ∈ h1,`}, H2,` =

{(Nx − `, ny) | ny ∈ h2,`}. Here g1, g2, h1,`, and h2,` satisfy

1) {g1, Nx − 1− g2} is a partition of {1, 2, . . . , Nx − 2}.
2) {h1,`}L`=1 is a partition of {1, 2, . . . , Ny − 2}.
3) h2,` = Ny − 1− h1,` for ` = 1, . . . , L.

The first constraint on g1, g2 is due to Theorem 1. The second requirement indicates the sets H1,` originate from

H1 in POBA. Furthermore, the third condition enforces h1,` and h2,` to be symmetric to Ny − 1, which will play

a crucial role in analyzing the difference coarray. Note that, by definition, the number of sensors in POBA-L is

identical to that in OBA.

Now it is clear that the arrays in Fig. 3 and Fig. 4 all satisfy Definition 6. They are characterized by different

parameters L, g1, and h1,`. For instance, the HOBA in Fig. 3(b) corresponds to g1 = {1, 3, 5, 7, 9, 11, 13}, L = 1,

and h1,1 = {1, . . . , 9}. The parameters for the arrays in Fig. 4 are listed in the caption.

Our next theorem determines a necessary and sufficient condition in terms of h1,` under which POBA-L have

hole-free difference coarrays:

Theorem 2: Let Nx and Ny be positive integers. Let DPOBA-L be the difference coarray of a partially open

box array with parameters Nx, Ny , and L layers. Let DOBA be the difference coarray of an open box array with

parameters Nx and Ny . Then DPOBA-L = DOBA if and only if

h1,` ⊆ P`′ and h1,` ⊆ P`′ − (Ny − 1), (10)

where P`′ = ∪p+q=`′h1,p ⊕ h1,q for all 2 ≤ `′ ≤ `. Here A⊕ B = {a + b | a ∈ A, b ∈ B} is the direct sum of A

and B.

Proof: See Appendix D.

The importance of Theorem 2 resides in the following: Since the sets h1,` have smaller sizes than the 2D array

SPOBA-L, it is more tractable to verify (10) than to calculate DPOBA-L directly. Furthermore, if (10) is not satisfied,

then all the holes in DPOBA-L can be identified from the 1D sets h1,`, based on the necessity proof of Theorem 2.

This is also demonstrated through a numerical example in [31, Section I]. Another advantage is that, we can use

(10) to design new array configurations with reduced mutual coupling. By choosing h1,` appropriately, it is possible

to reduce the weight function w(0, 1), w(1, 1), and w(1,−1) systematically.
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Fig. 5. Examples of HOBA-2. (a) Nx = 16, Ny = 11 and (b) Nx = 16, Ny = 12.

In Section V and VI, we will propose half open box arrays with two layers and hourglass arrays, respectively.

These arrays not only have simple, closed-form sensor locations but also satisfy Theorem 2, so that their difference

coarrays are hole-free. The weight functions of these novel array configurations will be summarized in Section VII.

V. HALF OPEN BOX ARRAYS WITH TWO LAYERS (HOBA-2)

We now introduce the half open box array with two layers (HOBA-2). This array is defined by choosing h1,2 to

be ULA with separation 2, so that the weight function w(0, 1) decreases. The formal definition is given as follows:

Definition 7 (Half open box arrays with two layers, HOBA-2): The half open box array with two layers is a

partially open box array with L = 2 layers, and

g1 = {1 + 2` | 0 ≤ ` ≤ b(Nx − 3)/2c},

g2 = {Nx − 1− 2` | 1 ≤ ` ≤ b(Nx − 2)/2c},

h1,1 = {1 + 2` | 0 ≤ ` ≤ b(Ny − 3)/2c} ∪ {Ny − 2},

h1,2 = {2` | 1 ≤ ` ≤ b(Ny − 3)/2c}.

The sets h2,1 and h2,2 satisfy Definition 6.

Fig. 5 depicts the array geometry of HOBA-2 for (a) Ny = 11 (odd) and (b) Ny = 12 (even). It can be observed

that the weight function w(0, 1) becomes smaller than HOBA with the same Nx and Ny . For instance, for HOBA

with Nx = 16 and Ny = 11, w(0, 1) is 20 while the weight function w(0, 1) for HOBA-2, Nx = 16, and Ny = 11,

as shown in Fig. 5(a), is as small as 4.
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The difference coarray for HOBA-2 possess the same difference coarray as OBA, as indicated in the following

theorem:

Theorem 3: Half open box arrays with two layers have the same difference coarray as open box arrays.

Proof: According to Theorem 2, it suffices to show that

h1,2 ⊆ P2 = h1,1 ⊕ h1,1, (11)

h1,2 ⊆ P2 − (Ny − 1) = h1,1 ⊕ h1,1 − (Ny − 1). (12)

Eq. (11) can be proved as follows. Since 1 ∈ h1,1, we have

h1,1 ⊕ h1,1 ⊇ h1,1 + 1 ⊇ {2 + 2` | 0 ≤ ` ≤ b(Nx − 3)/2c}.

Letting `′ = `+ 1 yields

h1,1 ⊕ h1,1 ⊇ {2`′ | 1 ≤ `′ ≤ b(Nx − 3)/2c+ 1} ⊃ h1,2.

Next we will prove (12). It can be observed that Ny − 2 ∈ h1,1 whenever Ny is odd or even. Then we have

h1,1 ⊕ h1,1 − (Ny − 1) ⊇ h1,1 ⊕ {Ny − 2} − (Ny − 1)

⊇ {2` | 0 ≤ ` ≤ b(Ny − 3)/2c} ⊃ h1,2.

This completes the proof.

The mutual coupling effect depends not only on w(0, 1), but also on other weight functions at small separations,

such as w(1, 1) and w(1,−1). For HOBA-2, even though the weight function w(0, 1) becomes smaller, w(1, 1)

and w(1,−1) increase significantly. For instance, the HOBA with Nx = 16, Ny = 11, as depicted in Fig. 3(b),

enjoys w(1, 1) = w(1,−1) = 1 while the HOBA-2 and Nx = 16, Ny = 11, as illustrated in Fig. 5(a), owns

w(1, 1) = w(1,−1) = 9. Therefore, for HOBA-2, the reduction in the mutual coupling effect is limited.

VI. HOURGLASS ARRAYS

In this section, we will propose hourglass arrays, which look like hourglasses on the 2D plane. These novel array

configurations have the same number of sensors and the same difference coarray as those in OBA. Therefore, the

difference coarrays of hourglass arrays are hole-free. In addition, the sensor locations can be expressed in closed

form. Most importantly, they possess small weight functions w(1, 0) and w(0, 1) as well as w(1, 1) and w(1,−1).

To develop some feeling for hourglass arrays, Fig. 4(b) demonstrates the hourglass array with Nx = 16 and

Ny = 11. The sets g1 and g2 are identical to those in HOBA. There are L = 3 layers. The sensors in H1,1∪H1,2∪H1,3

can be viewed as the unions of three ULAs. The first ULA contains (0, 2), (0, 4), (0, 6), (0, 8), the second ULA is

composed of (0, 1), (1, 3), (2, 5), and the third ULA consists of (0, 9), (1, 7), (2, 5). Notice that the sensor located

at (2, 5) is relatively far away from other sensors, since the distance from (2, 5) to its nearest sensor is
√

5.

The hourglass arrays are formally defined as
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h1,` =


{2p, Ny − 1− 2p | 1 ≤ p ≤ b(Ny − 1)/4c} ∪ {1, Ny − 2} , if ` = 1,

{2`− 1, Ny − 2`} , if Ny is odd and 2 ≤ ` ≤ L,

{2`− 1, 2bNy/4c − 2`+ 3, 2dNy/4e+ 2`− 4, Ny − 2`}, if Ny is even and 2 ≤ ` ≤ L,

(13)

Definition 8 (Hourglass arrays): Let Nx and Ny be positive integers. An hourglass array is a partially open box

array with L layers where the sets g1 and g2 are given by

g1 = {1 + 2p | 0 ≤ p ≤ b(Nx − 3)/2c},

g2 = {Nx − 1− 2p | 1 ≤ p ≤ b(Nx − 2)/2c}.

Here the number of layers L is defined as

L =

b(Ny + 1)/4c , if Ny is odd,

bNy/8 + 1c , if Ny is even.
(14)

The sets h1,` are given in (13) and h2,` = Ny − 1− h1,`.

The MATLAB function POBA_L.m returns the sensor locations of hourglass arrays, by specifying the parameter

Nx, Ny , and the third parameter being ‘hourglass’ [25]. Fig. 6 elaborates the array geometry of hourglass

arrays for (a) Nx = 15, Ny = 27 and (b) Nx = 15, Ny = 26. It can be seen from Fig. 6(a) that, when Ny

is an odd number, The array configuration, indicated by the bullets as the sensors, resembles an hourglass. The

sets G1,G2,H1,`,H2,` for 2 ≤ ` ≤ L = 7, constitute the two bulbs in an hourglass. The neck in this hourglass

corresponds to H1,7 and H2,7. The sets H1,1 and H2,1 can be regarded as two pillars. If Ny is an even number, as

shown in Fig. 6(b), the array geometry looks like an hourglass (G1,G2,H1,`,H2,` for 2 ≤ ` ≤ L = 4) with two

necks (H1,4,H2,4) and two pillars (H1,1,H2,1).

Note that the number of layers L depends on Ny . According to (14), L is approximately Ny/4 if Ny is odd

while L is around Ny/8 when Ny is even. Furthermore, L ≤ Nx/2 in the defintion of POBA-L (Defintion 6). It

can be deduced that, for large Nx and Ny , the aspect ratio Ny/Nx of hourglass arrays should be less than 2 for

odd Ny and 4 for even Ny .

The next result characterizes the difference coarray of hourglass arrays:

Theorem 4: Hourglass arrays own the same difference coarray as open box arrays.

Proof: See Appendix E.

Summarizing, hourglass arrays own closed-form sensor locations and their coarrays are identical to those of

OBA. Furthermore, it will be shown in the next section that, the weight functions w(1, 0), w(0, 1), w(1, 1), and

w(1,−1) for hourglass arrays are sufficiently small, so that the mutual coupling effect can be significantly reduced.

VII. WEIGHT FUNCTIONS

It is known that the weight functions at small separations are more important for mutual coupling effects [7]. It

is desirable to have sufficiently small w(1, 0), w(0, 1), w(1, 1), and w(1,−1). Therefore, in this section, we will
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Fig. 6. Hourglass arrays with (a) Nx = 15, Ny = 27 and (b) Nx = 15, Ny = 26. The total number of sensors for (a) and (b) are 67 and 65,

respectively.

study these weight functions for URA, billboard arrays, OBA, HOBA, HOBA-2, and hourglass arrays. A summary

is given in Table I for convenience. Note that some assumptions on the first row of Table I (e.g., Nx ≥ 3 and

Ny ≥ 2 for the OBA) are not parts of the definitions for these arrays. They are introduced in order to have simple

and closed-form expressions for the weight functions.

Consider the weight function w(1, 0) for all these arrays. Asymptotically, w(1, 0) grows linearly with NxNy for

URA. For billboard arrays and OBA, w(1, 0) increases linearly with Nx. It is noteworthy that, for the proposed

array configurations (HOBA, HOBA-2, and hourglass arrays), the weight function w(1, 0) is fixed to be 2, even if

Nx and Ny are huge.

However, mutual coupling effects also depend on w(0, 1), w(1, 1), and w(1,−1). According to Table I, hourglass
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TABLE I

SUMMARY ON THE WEIGHT FUNCTIONS

URA Billboard OBA HOBA HOBA-2 Hourglass arrays

Nx =

Ny ≥ 4

Nx ≥ 3,

Ny ≥ 2

Nx ≥ 4,

Ny ≥ 3
Nx ≥ 5, Ny ≥ 5

Nx ≥ 2L+ 1, Ny ≥ 7,

L is defined in (14).

w(1, 0) Ny(Nx − 1) Nx − 1 Nx − 1 2 2 2

w(0, 1) Nx(Ny − 1) Ny − 1 2(Ny−1) 2(Ny−1)

4, if Ny is odd,

6, if Ny is even.

8, if Ny is odd,

10, if Ny is even.

w(1, 1) (Nx−1)(Ny−1) Nx − 3 1 1

Ny − 2, if Ny is odd,

Ny − 3, if Ny is even.



3, if Ny = 7, 8,

5, if Ny = 10 or 2r + 1, r ≥ 4,

7, if Ny = 4r, r ≥ 3,

9, if Ny = 4r + 2, r ≥ 3.

w(1,−1) (Nx−1)(Ny−1) 1 1 1

Ny − 2, if Ny is odd,

Ny − 3, if Ny is even.



3, if Ny = 7, 8,

5, if Ny = 10 or 2r + 1, r ≥ 4,

7, if Ny = 4r, r ≥ 3,

9, if Ny = 4r + 2, r ≥ 3.

arrays are the only class of arrays for which all the weight functions, such as w(1, 0), w(0, 1), w(1, 1), and w(1,−1)

are significantly smaller when Nx and Ny are large. This property indicates that hourglass arrays own the least

mutual coupling among all the arrays listed in Table I.

Next, we will justify the expressions for some of the weight functions given in Table I.

A. Derivation to the weight function expressions in HOBA

To evaluate w(1, 0), it suffices to consider the elements whose y coordinates are either 0 or Ny − 1, due to

Definition 4. Since Nx ≥ 4, g1 and g2 are not empty. It is obvious that the sensor pair of (1, 0) and (0, 0)

contributes to w(1, 0). First consider Nx to be an odd number. According to (7), Nx − 2 ∈ g1, so (Nx − 1, 0) and

(Nx − 2, 0) also contribute to w(1, 0). In this case, the smallest and the largest elements in g2 are 2 and Nx − 3,

respectively, implying there are no sensor pairs with separation 1 if the y coordinates are Ny − 1. On the other

hand, if Nx is even, the only two sensor pairs contributing to w(1, 0) are (1, 0), (0, 0) and (1, Ny − 1), (0, Ny − 1).

The weight function w(0, 1) is identical to that in OBA since they share the same H1 and H2. The weight

functions w(1, 1) and w(1,−1) can be calculated as follows: If Nx is odd, the sensor pairs (Nx−1, 1), (Nx−2, 0)

and (1, 0), (0, 1) contribute to w(1, 1) and w(1,−1), respectively. If Nx is even, w(1, 1) and w(1,−1) result from

the sensor pairs (1, Ny − 1), (0, Ny − 2) and (1, 0), (0, 1), which completes the derivation.

B. Derivation to the weight function expressions in HOBA-2

The weight function w(1, 0) is 2 because the sets g1 and g2 in HOBA-2. are exactly the same as those in HOBA.

Next we will derive the expression for w(0, 1). If Ny is an odd number, it can be deduced that 1 ∈ h1,1, Ny−2 ∈
h1,1, and Ny−3 /∈ h1,1. Hence, the four sensor pairs contributing to w(0, 1) are (0, 1), (0, 0); (0, Ny−1), (0, Ny−2);



16

(Nx−1, 1), (Nx−1, 0); (Nx−1, Ny−1), (Nx−1, Ny−2). If Ny is an even number, we have 1 ∈ h1,1, Ny−2 ∈ h1,1,

and Ny−3 ∈ h1,1. Apart from the four sensor pairs in the odd case, the two more pairs are (0, Ny−2), (0, Ny−3)

and (Nx − 1, 2), (Nx − 1, 1). The remaining sensor pairs do not add to w(0, 1) since the separations are greater

than 1.

The weight function w(1, 1) can be obtained as follows: For w(1, 1), it suffices to consider the cross differences

between H1,1 and H1,2, as well as H2,1 and H2,2. It can be inferred that the sensor pairs of (1, 2`) ∈ H1,2 and

(0, 2(`− 1) + 1) ∈ H1,1 contribute to w(1, 1). In this case, there are |h1,2| pairs. Similar arguments also apply to

the sets H2,1 and H2,2. Next, if Nx is odd, the sensor pair (Nx − 1, 1), (Nx − 2, 0) also has separation (1, 1). On

the other hand, if Nx is even, the sensor pair (1, Ny − 1), (0, Ny − 2) contributes to w(1, 1). Therefore, w(1, 1)

becomes is

w(1, 1) = 2|h1,2|+ 1 = 2b(Ny − 3)/2c+ 1

=

Ny − 2, if Ny is odd,

Ny − 3, if Ny is even.

The same technique can be used in finding the expression for w(1,−1).

C. Derivation to the weight function expressions in hourglass arrays

It can be deduced that the weight function w(1, 0) is also 2, since the sets g1 and g2 share the same expression

as those in HOBA.

To derive expressions for w(0, 1), consider the following chain of arguments. Since Ny ≥ 7, we have b(Ny −
1)/4c ≥ 1, so 2 ∈ h1,1 and Ny − 3 ∈ h1,1. As a result, there exist eight sensor pairs

(nx, ny + 1), (nx, ny) (15)

where nx = 0, Nx − 1, and ny = 0, 1, Ny − 3, Ny − 2, contributing to the weight function w(0, 1).

For other sensor pairs, the self difference of h1,1 is first analyzed. Consider the following two sets,

h+
1,1 = {Ny − 1− 2p | 1 ≤ p ≤ b(Ny − 1)/4c},

h−1,1 = {2p | 1 ≤ p ≤ b(Ny − 1)/4c},

which satisfy h1,1 = h+
1,1∪h−1,1∪{1, Ny−2}. The self difference of h1,1 can be decomposed into the self differences

and the cross differences of h+
1,1, h−1,1, and {1, Ny − 2}. Since h+

1,1 and h−1,1 are ULA with spacing 2, for w(0, 1),

it suffices to consider the cross differences between h+
1,1 and h−1,1, defined as

diff(h+
1,1, h

−
1,1) = {a− b | ∀ a ∈ h+

1,1, ∀ b ∈ h−1,1}.
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The minimum element in diff(h+
1,1, h

−
1,1) is given by

Ny − 1− 4b(Ny − 1)/4c =



0, if Ny = 4r + 1,

1, if Ny = 4r + 2,

2, if Ny = 4r + 3,

3, if Ny = 4r,

(16)

Therefore, if Ny = 4r + 2, we have 1 ∈ diff(h1,1, h1,1). Similarly, it can be shown that 1 ∈ diff(h2,1, h2,1), since

h2,1 = Ny − 1− h1,1.

Next we turn to the self differences of h1,` for 2 ≤ ` ≤ L. If Ny is odd, we will show that the difference (0, 1)

cannot be found in the self difference of h1,`. This statement can be proved as follows. According to (13), the self

difference of h1,` is

diff(h1,`, h1,`) = {0,±(Ny + 1− 4`)}.

Since Ny is odd, all the elements in diff(h1,`, h1,`) are even numbers, so 1 /∈ diff(h1,`, h1,`).

If Ny is even, the self difference of h1,` becomes

diff(h1,`, h1,`) = {0,±(s2 − s1),±(s3 − s1),±(s4 − s1),

±(s3 − s2),±(s4 − s2),±(s4 − s3)},

where s1 = 2`− 1, s2 = 2bNy/4c− 2`+ 3, s3 = 2dNy/4e+ 2`− 4, and s4 = Ny − 2`, as indicated in (13). It can

be shown that s1 < s2 < s3 < s4. Therefore, for w(0, 1), it suffices to consider the differences between adjacent

elements, as discussed in the following three cases:

1) s2 − s1 = 2bNy/4c − 4`+ 4 is an even number, which cannot be 1.

2) s3 − s2 = 2(dNy/4e − bNy/4c) + (4`− 7) is an odd number. If s3 − s2 = 1, then we have

dNy/4e − bNy/4c = 4− 2`. (17)

Since dxe − bxc is 0 if x is an integer and 1 otherwise, the solution to (17) is ` = 2 and Ny = 4r for some

integer r. That is, if Ny is an integer multiple of 4, there exists a sensor pair in h1,2 with separation 1.

3) s4 − s3 = Ny − 2dNy/4e − 4`+ 4 is an even number.

Similar arguments can be applied to h2,`. The expressions for w(0, 1) in hourglass arrays can be obtained by

combining (15), (16), and (17).

For w(1, 1), we first consider the sensor pairs n1,n2 such that n1 − n2 = (1, 1) for Ny = 7, 8, 10 and odd Nx,

as listed in the first three rows of Table II. Next we will focus on the remaining cases in Table II.

1) Ny = 2r + 1 and Nx is an odd number, where r ≥ 4 is an integer: In this case, L ≥ 2 and b(Ny − 1)/4c ≥ 2.

Therefore, we have

{2, 4, Ny − 5, Ny − 3} ⊆ h1,1, (18)

{3, Ny − 4} ⊆ h1,2. (19)
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TABLE II

SENSOR PAIRS FOR w(1, 1) WITH ODD Nx

Sensor pairs n1,n2;

Ny = 7
(1, 3), (0, 2); (Nx − 1, 1), (Nx − 2, 0);

(Nx − 1, 4), (Nx − 2, 3);

Ny = 8
(1, 3), (0, 2); (Nx − 1, 1), (Nx − 2, 0);

(Nx − 1, 5), (Nx − 2, 4);

Ny = 10

(1, 3), (0, 2); (1, 6), (0, 5);

(Nx − 1, 1), (Nx − 2, 0); (Nx − 1, 4), (Nx − 2, 3);

(Nx − 1, 7), (Nx − 2, 6);

Ny = 2r+1,

r ≥ 4

(1, 3), (0, 2); (1, Ny − 4), (0, Ny − 5);

(Nx − 1, 1), (Nx − 2, 0); (Nx − 1, 4), (Nx − 2, 3);

(Nx − 1, Ny − 3), (Nx − 2, Ny − 4);

Ny = 4r,

r ≥ 3

(1, 3), (0, 2); (1, 2r − 1), (0, 2r − 2);

(1, Ny − 4), (0, Ny − 5); (Nx − 1, 1), (Nx − 2, 0);

(Nx − 1, 4), (Nx − 2, 3);

(Nx − 1, 2r + 1), (Nx − 2, 2r);

(Nx − 1, Ny − 3), (Nx − 2, Ny − 4);

Ny = 4r+2,

r ≥ 3

(1, 3), (0, 2); (1, 2r − 1), (0, 2r − 2);

(1, 2r + 2), (0, 2r + 1); (1, Ny − 4), (0, Ny − 5);

(Nx − 1, 1), (Nx − 2, 0); (Nx − 1, 4), (Nx − 2, 3);

(Nx − 1, 2r), (Nx − 2, 2r − 1);

(Nx − 1, 2r + 3), (Nx − 2, 2r + 2);

(Nx − 1, Ny − 3), (Nx − 2, Ny − 4);

Due to (18) and (19), the only five sensor pairs are listed in the fourth row of Table II. It can be shown that

there do not exist sensor pairs with separation (1, 1) within H1,` and H2,` for 2 ≤ ` ≤ L.

2) Ny = 4r and Nx is an odd number, where r ≥ 3 is an integer: In this case, we know that

L = b4r/8 + 1c ≥ b12/8 + 1c = 2, (20)

b(Ny − 1)/4c = b(4r − 1)/4c = r − 1 ≥ 2. (21)

Using (20) and (21) in (13) leads to

{2, 4, 2r − 2, 2r + 1, Ny − 5, Ny − 3} ⊆ h1,1, (22)

{3, 2r − 1, 2r, Ny − 4} ⊆ h1,2. (23)

As a result, the seven sensor pairs contributing to the difference (1, 1) are shown in the fifth row of Table II.

3) Ny = 4r + 2 and Nx is an odd number, where r ≥ 3 is an integer. Similar to (20) and (21), we have L ≥ 2

and b(Ny − 1)/4c = r ≥ 3, implying

{2, 4, 2r − 2, 2r, 2r + 1, 2r + 3,

Ny − 5, Ny − 3} ⊆ h1,1, (24)
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Fig. 7. The normalized source directions, as shown in circles, for the examples in Section VIII. Here the number of sources D is assumed to

be a perfect square, i.e.,
√
D is an integer. The sources are uniformly located in the shaded region, over which there are

√
D equally-spaced

sources in one way and
√
D equally-spaced sources in the other.

{3, 2r − 1, 2r + 2, Ny − 4} ⊆ h1,2. (25)

Based on (24) and (25), the nine sensor pairs can be found to be those in the last row of Table II.

If Nx is an even number, it can be shown that Nx − 2 /∈ g1 and 1 ∈ g2. Therefore the sensor pair (Nx −
1, 1), (Nx−2, 0) does not exist. Instead, another sensor pair (1, Ny−1), (0, Ny−2) contributes to w(1, 1) for even

Nx. The remaining sensor pairs are listed in Table II.

For the weight function w(1,−1), the associated sensor pairs can also be identified using Table II. Let n1 and

n2 be a sensor pair satisfying n1 − n2 = (1, 1). Based on n1 and n2, we can uniquely construct another sensor

pair n′1 and n′2 such that n′1 − n′2 = (1,−1), as follows:

1) If n1 = (n1x, n1y) ∈ H1,1 and n2 = (n2x, n2y) ∈ H1,2 such that n1 − n2 = (1, 1), then it can be shown that

the sensor pair

n′1 = (n1x, Ny − 1− n1y), n′2 = (n2x, Ny − 1− n2y),

satisfies n′1 ∈ H1,1, n′2 ∈ H1,2, and n′1−n′2 = (1,−1). This property holds true since h1,` is symmetric. Similar

arguments apply to n1 = (n1x, n1y) ∈ H2,1 and n2 = (n2x, n2y) ∈ H2,2.

2) For odd Nx, if n1 = (Nx − 1, 1) and n2 = (Nx − 2, 0), it can be proved that n′1 = (1, 0) ∈ G1, n′2 = (0, 1) ∈
H1,1, and n′1 − n′2 = (1,−1).

3) For even Nx, if n1 = (1, Ny − 1) and n2 = (0, Ny − 2), then the sensor pair becomes n′1 = (1, 0) and

n′2 = (0, 1).

Therefore, we have w(1,−1) = w(1, 1) in hourglass arrays.

VIII. NUMERICAL EXAMPLES

In this section, we will study the DOA estimation performance in the presence of mutual coupling, for URA,

billboard arrays, 2D nested arrays, OBA, HOBA, HOBA-2, and hourglass arrays. The parameters are chosen to

be Nx = Ny = 9 for URA, Nx = Ny = 28 for billboard arrays, N1 = 4, N2 = 5 for 2D nested arrays,
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Nx = 29, Ny = 27 for OBA, HOBA, HOBA-2, and hourglass arrays, where the notations are given in Fig. 2 to 6.

The array geometries are also illustrated in [31, Section II] for clarity. Therefore, the number of physical sensors

is fixed to be 81 for all these arrays. The aperture is 8 × 8 for URA, 27 × 27 for billboard arrays, 24 × 24 for

2D nested arrays, and 26× 28 for OBA, HOBA, HOBA-2, as well as hourglass arrays. There are D, uncorrelated,

equal-power sources with 0dB SNR. The number of snapshots K is 200, and the normalized DOAs are illustrated

in Fig. 7, where the number of sources D is assumed to be a square number. The mutual coupling model is given in

(5), where c(1) = 0.3, B = 5, and c(`) = c(1)ejπ(`−1)/4/`. The measurements are generated based on (4) and the

DOAs are estimated using the 2D unitary ESPRIT algorithm [32] on the finite snapshot version of the signal on the

difference coarray. The root-mean-squared error is defined as RMSE = ((1/D)
∑D
i=1 (̂̄θi − θ̄i)2 + (̂̄φi − φ̄i)2)1/2,

where (θ̄i, φ̄i) and (̂̄θi, ̂̄φi) are the true normalized DOA and the estimated normalized DOA of the ith source,

respectively. Note that mutual coupling is present in the measurements but the 2D unitary ESPRIT algorithm does

not take care of mutual coupling. This scenario offers a baseline performance for DOA estimation in the presence

of mutual coupling. It will be shown that the proposed 2D sparse arrays (HOBA, HOBA-2, and hourglass arrays)

are capable of estimating the DOA satisfactorily when mutual coupling is present, even if the DOA estimator does

not take into account the existence of this coupling.

Fig. 8(a) shows the estimation performance as a function of SNR. Here the number of sources D = 9. At 0dB

SNR, the least RMSE is exhibited by hourglass arrays, followed by HOBA-2, then HOBA, then billboard arrays,

then OBA, then 2D nested arrays, and finally URA. Note that this result is in accordance with the associated weight

functions, as listed in Table I. Qualitatively, the smaller the weight functions w(1, 0), w(0, 1), w(1, 1), w(1,−1) are,

the less the mutual coupling effects are. The dependence of the RMSE versus the number of snapshots K is plotted

in Fig. 8(b). It is noteworthy that, in the presence of mutual coupling, hourglass arrays demonstrate considerable

reduction on RMSE using only 40 snapshots.

Fig. 9 shows the dependence of the RMSE on the parameter c1 in the mutual coupling model. It can be observed

that, for any array configuration, the RMSE is small if c1 is close to 0 (less mutual coupling), and the error starts

to increase significantly above certain thresholds of c1. In Fig. 9(a), the number of sources is D = 9. It can be

deduced that the thresholds of c1 are approximately 0.4 for billboard arrays, 0.25 for 2D nested arrays, 0.35 for

OBA, 0.3 for HOBA, 0.45 for HOBA-2, and 0.5 for hourglass arrays. This phenomenon indicates that hourglass

arrays are more robust to mutual coupling effects than the others. Fig. 9(b) plots the RMSE versus c1 if the number

of sources D = 36. The thresholds of c1 become 0.15 for billboard arrays, 0.1 for 2D nested arrays, OBA, HOBA,

and 0.2 for HOBA-2 and hourglass arrays, since it is more difficult to resolve 36 sources simultaneously than to

resolve 9 sources. Note that, even in the extreme case of D = 36 and c1 = 0.2, hourglass arrays still enjoy the

RMSE as small as 10−3, which is much smaller than those for URA, billboard arrays, 2D nested arrays, OBA, and

HOBA.

Note that the number of sources is much smaller than sensors (9, 36 � 81). It is conjectured that, 2D sparse

arrays might resolve more sources than sensors almost surely, in the absence of mutual coupling. However, if mutual

coupling is present, this is more challenging, and it will be explored in greater detail in future.
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Fig. 8. The RMSE as a function of (a) SNR and (b) the number of snapshots K. The array geometries are illustrated in [31, Section II]. The

number of sensors is 81 for all arrays. The parameters are (a) K = 200, the number of sources D = 9 and (b) 0dB SNR, D = 9. The sources

directions are depicted in Fig. 7. Each point is averaged from 1000 runs.
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Fig. 9. The RMSE as a function of the mutual coupling model for (a) the number of sources D = 9 and (b) D = 36. The array geometries are

illustrated in [31, Section II]. The number of sensors is 81 for all arrays. The parameters are 0dB SNR and K = 200. The sources directions

are depicted in Fig. 7. The mutual coupling model is characterized by B = 5 and c(`) = c(1)ejπ(`−1)/4/`. Each point is averaged from 1000

runs.
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IX. CONCLUDING REMARKS

In this paper, we proposed several generalizations of OBA, including POBA, HOBA, POBA-L, HOBA-2, and

hourglass arrays. These arrays enjoy closed-form sensor locations, hole-free coarrays, and reduced mutual coupling

effects. Our numerical examples show that, hourglass arrays perform better than the others, in the presence of

mutual coupling.

Note that the hourglass array is one of the array configurations that satisfy Theorem 2. In the future, it will be

of considerable interest to study the array configurations which not only satisfy Theorem 2 but also own even less

mutual coupling than hourglass arrays.

APPENDIX A

PROOF OF LEMMA 1

The proof can be divided into four cases:

1) If ap < 0, consider the sensor pair in S′: (Nx− 1, Ny − 1) and (ap, bp). Their difference is (Nx− 1− ap, Ny −
1− bp) /∈ DOBA, since the first coordinate Nx − 1− ap > Nx − 1.

2) If ap > Nx− 1, for the sensor pair (ap, bp), (0, Ny − 1) ∈ S′, the difference becomes (ap, bp−Ny + 1) /∈ DOBA

because ap > Nx − 1.

3) If bp < 0, we can take the sensor pair of (0, Ny−1) and (ap, bp). The difference is (−ap, Ny−1− bp) /∈ DOBA.

4) If bp > Ny−1, we have the following chain of arguments. Since P < Nx, there must exist a element (n′, 0) ∈ S′.

Then the difference between (ap, bp) and (n′, 0) is (ap − n′, bp) /∈ DOBA, because bp > Ny − 1.

These arguments show that 0 ≤ ap ≤ Nx − 1 and 0 ≤ bp ≤ Ny − 1 are necessary for DOBA = D′. Furthermore,

since (ap, bp) /∈ SOBA, the necessary condition becomes 1 ≤ ap ≤ Nx− 2 and 1 ≤ bp ≤ Ny − 1, which proves this

lemma.

APPENDIX B

PROOF OF LEMMA 2

Assume that DOBA = D′. We obtain (Nx− 1, Ny − 1) ∈ DOBA = D′. Due to Lemma 1, the only sensor pair with

this separation is (Nx − 1, Ny − 1) and (0, 0), implying (0, 0) ∈ S′. Similar arguments apply to the sensor pair of

(Nx − 1, 0) and (0, Ny − 1), which proves this lemma.

APPENDIX C

PROOF OF THEOREM 1

Let SOBA and SPOBA be an open box array and a partially open box array, respectively. Their difference coarrays

are denoted by DOBA and DPOBA. It is clear that DPOBA ⊆ DOBA, due to (6) and Lemma 1.

(Sufficiency) We will show that if {g1, Nx − 1 − g2} is a partition of {1, 2, . . . , Nx − 2}, then DOBA ⊆ DPOBA.

That is, for every m = (mx,my) ∈ DOBA, there exists at least one sensor pair (n1,n2) ∈ S2
POBA such that

n1−n2 = m. Note that we only need to check half of the elements in DOBA, since weight functions are symmetric,

i.e., w(m) = w(−m) [9]. If {g1, Nx − 1 − g2} is a partition of {1, 2, . . . , Nx − 2}, then {g2, Nx − 1 − g1} is
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TABLE III

12 CASES IN THE PROOF OF THEOREM 1

Case mx my n1 n2

1 0

0

(0, 0) ∈ SPOBA (0, 0) ∈ SPOBA

2 ∈ g1 (mx, 0) ∈ G1 (0, 0) ∈ SPOBA

3 ∈ Nx − 1− g2 (Nx − 1, Ny − 1) ∈ SPOBA (Nx − 1−mx, Ny − 1) ∈ G2

4 Nx − 1 (Nx − 1, 0) ∈ SPOBA (0, 0) ∈ SPOBA

5 0

1 ≤ my ≤ Ny − 1

(0,my) ∈ SPOBA (0, 0) ∈ SPOBA

6 ∈ Nx − 1− g1 (Nx − 1,my) ∈ SPOBA (Nx − 1−mx, 0) ∈ G1

7 ∈ g2 (mx, Ny − 1) ∈ G2 (0, Ny − 1−my) ∈ SPOBA

8 Nx − 1 (Nx − 1,my) ∈ SPOBA (0, 0) ∈ SPOBA

9 0

−Ny + 1 ≤ my ≤ −1

(0, 0) ∈ SPOBA (0,−my) ∈ SPOBA

10 ∈ g1 (mx, 0) ∈ G1 (0,−my) ∈ SPOBA

11 ∈ Nx − 1− g2 (Nx − 1, Ny − 1 +my) ∈ SPOBA (Nx − 1−mx, Ny − 1) ∈ G2

12 Nx − 1 (Nx − 1, Ny − 1 +my) ∈ SPOBA (0, Ny − 1) ∈ SPOBA

also a partition of {1, 2, . . . , Nx− 2}. Due to this property, we can identify at least one (n1,n2) pair for any given

difference (mx,my), as listed in Table III, which proves the sufficiency.

(Necessity) If {g1, Nx−1−g2} is not a partition of {1, 2, . . . , Nx−2}, then g1∪(Nx−1−g2) 6= {1, 2, . . . , Nx−2}
or g1 and Nx−1−g2 are not disjoint. Now there are two possible cases: For the first case, if g1∪ (Nx−1−g2) 6=
{1, 2, . . . , Nx−2}, there must exist n0 ∈ {1, 2, . . . , Nx−2} such that n0 /∈ g1 and n0 /∈ Nx−1−g2, since g1 and

g2 are subsets of {1, 2, . . . , Nx − 2} (the first item in Definition 4). We will show that, (Nx − 1− n0, 1) /∈ DPOBA.

Suppose there exist (n1,n2) ∈ S2
POBA such that n1 − n2 = (Nx − 1 − n0, 1). This means the y coordinates of

n1 and n2 must differ by 1. According to Definition 4, there are only two cases of n1 and n2:

1) If n1 ∈ H2 and n2 ∈ G1, then the difference (Nx − 1 − n0, 1) is achieved only when n1 = (Nx − 1, 1) and

n2 = (n0, 0). We have n1 ∈ H2 but n2 /∈ G1, since n0 /∈ g1.

2) If n1 ∈ G2 and n2 ∈ H1, then n1 = (Nx − 1− n0, Ny − 1) and n2 = (0, Ny − 2). We obtain n1 /∈ G2 since

n0 /∈ Nx − 1− g2.

For the second case, if g1 and Nx− 1−g2 are not disjoint, then the size of g1 ∪ (Nx− 1−g2) can be expressed as

|g1 ∪ (Nx − 1− g2)|

= |g1|+ |Nx − 1− g2| − |g1 ∩ (Nx − 1− g2)|

< |g1|+ |g2| = Nx − 2,

which implies g1 ∪ (Nx − 1− g2) 6= {1, 2, . . . , Nx − 2}. These arguments complete the proof.

APPENDIX D

PROOF OF THEOREM 2

(Sufficiency) The proof of this theorem is similar to that of Theorem 1. We need to show that, if {h1,`}L`=1

satisfies (10), then for every m = (mx,my) ∈ DOBA, there exist n1,n2 ∈ SPOBA-L such that n1 − n2 = m. It
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TABLE IV

19 CASES IN THE PROOF OF THEOREM 2

Case mx my n1 n2 Remarks

1 0 0 (0, 0) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

2 ∈ g1 0 (mx, 0) ∈ G1 (0, 0) ∈ SPOBA-L {g1, Nx − 1− g2}
partitions {1, . . . , Nx − 2}3 ∈ Nx − 1− g2 0 (Nx − 1, Ny − 1) ∈ SPOBA-L (Nx−1−mx, Ny−1) ∈ G2

4 Nx − 1 0 (Nx − 1, 0) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

5 −(Nx − 1) Ny − 1 (0, Ny − 1) ∈ SPOBA-L (Nx − 1, 0) ∈ SPOBA-L

6 ∈ −g1 Ny − 1 (0, Ny − 1) ∈ SPOBA-L (−mx, 0) ∈ G1 {g1, Nx − 1− g2}
partitions {1, . . . , Nx − 2}7 ∈ −(Nx − 1− g2) Ny − 1 (Nx−1+mx, Ny−1) ∈ G2 (Nx − 1, 0) ∈ SPOBA-L

8 0 Ny − 1 (0, Ny − 1) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

9 ∈ Nx − 1− g1 Ny − 1 (Nx − 1, Ny − 1) ∈ SPOBA-L (Nx − 1−mx, 0) ∈ G1 {Nx − 1− g1, g2}
partitions {1, . . . , Nx − 2}10 ∈ g2 Ny − 1 (mx, Ny − 1) ∈ G2 (0, 0) ∈ SPOBA-L

11 Nx − 1 Ny − 1 (Nx − 1, Ny − 1) ∈ SPOBA-L (0, 0) ∈ SPOBA-L

12 0 < mx < (Nx−1)− (`−1) ∈ h2,` (Nx − `,my) ∈ H2,` (Nx − `−mx, 0) ∈ G1 if Nx − `−mx ∈ g1

13 0 < mx < (Nx−1)− (`−1) ∈ h2,` (mx + `− 1, Ny − 1) ∈ G2 (`− 1, Ny − 1−my) ∈ H1,` if mx + `− 1 ∈ g2

14 Nx − ` ∈ h2,` (Nx − `,my) ∈ H2,` (0, 0) ∈ SPOBA-L

15 Nx − k for 1 ≤ k ≤ `− 1 ∈ h2,` (Nx − p,my + r) ∈ H2,p (k − p, r) ∈ H1,k−p+1

if ∃ p ∈ {1, . . . , k} and

∃ r ∈ h1,k−p+1 such that

my + r ∈ h2,p

16 −(Nx−1)+(`−1) < mx < 0 ∈ h1,` (`− 1,my) ∈ H1,` (`− 1−mx, 0) ∈ G1 if `− 1−mx ∈ g1

17 −(Nx−1)+(`−1) < mx < 0 ∈ h1,` (Nx−`+mx, Ny−1) ∈ G2 (Nx−`,Ny−1−my) ∈ H2,` if Nx − `+mx ∈ g2

18 −(Nx − `) ∈ h1,` (`− 1,my) ∈ H1,` (Nx − 1, 0) ∈ SPOBA-L

19 −(Nx − k) for 1 ≤ k ≤ `− 1 ∈ h1,` (p− 1,my + r) ∈ H1,p

(Nx − (k − p+ 1), r) ∈
H2,k−p+1

if ∃ p ∈ {1, ..., k} and

∃ r ∈ h2,k−p+1 such that

my + r ∈ h1,p

For Case 12 - 19, the parameter ` satisfies 1 ≤ ` ≤ L.

suffices to consider 0 ≤ |mx| ≤ Nx−1 and 0 ≤ my ≤ Ny−1 since the weight functions satisfy w(m) = w(−m).

For 0 ≤ |mx| ≤ Nx− 1 and 0 ≤ my ≤ Ny − 1, the associated n1 and n2 are summarized into 19 cases in Table

IV. In particular, some cases are elaborated as follows:

(Case 6, 7, 9, 10) In Case 6 and 7, since {g1, Nx − 1− g2} is a partition of {1, . . . , Nx − 2}, for −(Nx − 1) <

mx < 0 and my = Ny − 1, the pair (n1,n2) can be identified using either Case 6 or 7. Similar arguments can be

applied to Case 9 and 10.

(Case 12, 13, 16, 17) For 0 < mx < (Nx − 1) − (` − 1) and 0 < my < Ny − 1, it is guaranteed that either

Case 12 or 13 can be exploited to identify the sensor pair n1 and n2. This is true because {g1, Nx − 1− g2} is a

partition of {1, . . . , Nx − 2}, and {h2,`}L`=1 is a partition of {1, . . . , Ny − 2}. Case 16 and 17 are similar to Case

12 and 13.

(Case 15) In this case, for some p ∈ {1, . . . , k}, if there exists r ∈ h1,k−p+1 such that my + r ∈ h2,p, then, by

definition, it can be deduced that n1 ∈ H2,p and n2 ∈ H1,k−p+1. This sufficient condition is equivalent to

∃ r ∈ h1,k−p+1, ∃ s ∈ h2,p, ∀my ∈ h2,`,
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such that my + r = s.

Letting s̃ = Ny − 1− s and m̃y = Ny − 1−my yields

∃ r ∈ h1,k−p+1, ∃ s̃ ∈ h1,p, ∀ m̃y ∈ h1,`

such that m̃y = s̃+ r. (26)

Eq. (26) indicates that, any element in h1,` can be expressed as the sum of an element in h1,p and an element in

h1,k−p+1. Therefore, we obtain

h1,` ⊆ h1,p ⊕ h1,k−p+1 = (h1,p ⊕ h1,q)|p+q=k+1

⊆
⋃

p̃+q̃=k+1

h1,p̃ ⊕ h1,q̃ = Pk+1, (27)

where 2 ≤ k+1 ≤ `. If (10) holds true, then (27) also holds true, and so does (26). Therefore, there exist n1 ∈ H2,p

and n2 ∈ H1,k−p+1 such that n1 − n2 = m.

(Case 19) The proof of this case is similar to that of Case 15. For some p ∈ {1, . . . , k}, the sufficient condition

on the last row of Table IV is equivalent to this statement:

∃ r ∈ h2,k−p+1, ∃ s ∈ h1,p, ∀my ∈ h1,`,

such that my + r = s.

Setting r̃ = Ny − 1− r gives

∃ r̃ ∈ h1,k−p+1, ∃ s ∈ h1,p, ∀my ∈ h1,`

such that my = s+ r̃ − (Ny − 1).

Similar to (27), we have h1,` ⊆ Pk+1 − (Ny − 1). Hence, if (10) is satisfied, then n1 ∈ H1,p and n2 ∈ H2,k−p+1.

(Necessity) This part can be proved by contradiction. If there exists n ∈ h1,` such that n /∈ P`′ for some `′ ≤ `,
then m = (Nx + 1− `′, Ny − 1− n) is a hole in DPOBA-L. We will show that there do not exist any sensor pairs

(n1,n2) ∈ S2
POBA-L such that n1 − n2 = (Nx + 1 − `′, Ny − 1 − n). Enumerating all possible combinations of

(n1,n2) leads to the following:

1) If n2 = (0, 0), then n1 = (Nx − (`′ − 1), Ny − 1− n). According to the x coordinate of n1, n1 could belong

to G1, H2,`′−1, or G2. However, based on the y coordinate of n1, we have n ∈ h1,`, and Nx − 1 − n ∈ h2,`.

Furthermore, since {h2,`}L`=1 is a partition of {1, . . . , Ny − 2}, we have n1 ∈ H2,`. This is a contradiction.

2) n2 = (Nx − 1, 0), (0, Ny − 1), (Nx − 1, Ny − 1) or n2 ∈ G2. It is evident that n1 = n2 + m /∈ SPOBA-L.

3) If n2 = (nx, 0) ∈ G1, then n1 = (Nx − (`′ − 1− nx), Ny − 1− n). The y coordinate of n1 indicates that n1

belongs to H2,`. From the x coordinate of n1, we have `′ − 1 − nx = `. By definition, `′ ≤ ` and nx ≥ 1

suggest that `′ − 1− nx ≤ `− 2, causing a contradiction.

4) If n2 = (p− 1, r) ∈ H1,p, then n1 = (Nx − (`′ − p), Ny − 1 + r − n). The x coordinate of n1 leads to three

cases:



27

a) If n1 ∈ G1, then Ny − 1 + r − n = 0 so r = n− (Ny − 1). Since n ∈ h1,`, we have 1 ≤ n ≤ Ny − 2 and

then −Ny + 2 ≤ r ≤ −1. This statement contradicts with r ∈ h1,p ⊆ {1, . . . , Ny − 2}.
b) If n1 ∈ G2, from the y coordinate of n1, we obtain Ny − 1 + r − n = Ny − 1 so r = n. Since {h1,`}L`=1

is a partition of {1, . . . , Ny − 2}, the y coordinate of n2 = (p− 1, n) implies n2 ∈ H1,`. We obtain p = `.

However, the x coordinate of n1 becomes Nx − (`′ − p) = Nx + ` − `′ ≥ Nx + ` − ` = Nx. Therefore,

n1 /∈ G2.

c) If n1 ∈ H2,`′−p, we obtain Ny−1 + r−n ∈ h2,`′−p, which is equivalent to n− r ∈ h1,`′−p. Since r ∈ h1,p,

it can be concluded that

n ∈ h1,`′−p ⊕ h1,p ⊆
⋃

p+q=`′

h1,p ⊕ h1,q = P`′ ,

which contradicts with the assumption n /∈ P`′ .

5) If n2 = (Nx−p, r) ∈ H2,p, then n1 = (2Nx+1−`′−p,Ny−1−n+r). Since 1 ≤ `′ ≤ ` ≤ L and 1 ≤ p ≤ L,

the x coordinate of n1 ranges from 2Nx − 2L+ 1 to 2Nx − 1. According to Definition 6, we have L ≤ Nx/2,

so the minimum value of the x coordinate in n1 is Nx + 1, implying n1 /∈ SPOBA-L.

Second, assume that there exists n ∈ h1,` such that n /∈ P`′ − (Ny − 1) for some `′ ≤ `. Following the same

steps in the previous case, it can be shown that m = (Nx + 1− `′,−n) is a hole in the difference coarray D. As

a result, the condition (10) is also necessary.

APPENDIX E

PROOF OF THEOREM 4

This theorem is a consequence of Theorem 2. We will first show that h1,` ⊆ h1,1 ⊕ h1,`′−1 ⊆ P`′ for every `′

and ` in 2 ≤ `′ ≤ ` ≤ L. That is, for every h ∈ h1,`, it suffices to find n1 ∈ h1,1 and n2 ∈ h1,`′−1 such that

h = n1 + n2. According to (13), h can be divided into four cases as follows:

(Case 1) If h = 2`− 1, then n1 and n2 are given by

n1 = 2(`− `′ + 1), n2 = 2(`′ − 1)− 1.

It can be seen that n2 ∈ h1,`′−1. We need to show that n1 ∈ h1,1. Since 2 ≤ `′ ≤ ` ≤ L, we have

1 ≤ `− `′ + 1 ≤ L− 1.

The upper bound L− 1 can be divided into two cases: If Ny is odd, then L− 1 = b(Ny − 3)/4c ≤ b(Ny − 1)/4c.
If Ny is even, we obtain L− 1 = bNy/8c ≤ b(Ny − 1)/4c. In either cases, n1 ∈ h1,1.

(Case 2) If h = Ny − 2`, it is divided into two cases based on Ny:

1) If Ny is odd, n1 and n2 are given by

n1 = Ny − 1− 2(`+ `′ − 2), n2 = 2(`′ − 1)− 1. (28)

It is obvious that n1 is even and n2 ∈ h1,`′−1. Next we will prove that n1 ∈ h1,1. since 2 ≤ `′ ≤ ` ≤ L, we

have 2 ≤ `+ `′ − 2 ≤ 2L− 2. There are two subcases according to `+ `′ − 2:
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a) If 2 ≤ `+ `′ − 2 ≤ b(Ny − 1)/4c, it can be shown that n1 ∈ h1,1.

b) If b(Ny − 1)/4c+ 1 ≤ `+ `′ − 2 ≤ 2L− 2, then the minimum of n1 is lower bounded by

n1,min = Ny − 1− 2(2L− 2)

= 4

(
Ny + 1

4
−
⌊
Ny + 1

4

⌋)
+ 2 ≥ 2. (29)

The maximum of n1 becomes

n1,max = Ny − 1− 2(b(Ny − 1)/4c+ 1)

= 4× Ny − 1

4
− 2

⌊
Ny − 1

4

⌋
− 2.

For odd Ny , it can be shown that (Ny−1)/4 ≤ b(Ny−1)/4c+ 1/2. The maximum of n1 is upper bounded

by

n1,max ≤ 4

(⌊
Ny − 1

4

⌋
+

1

2

)
− 2

⌊
Ny − 1

4

⌋
− 2

= 2

⌊
Ny − 1

4

⌋
. (30)

Hence, n1 ∈ h1,1, due to (13), (29), and (30).

2) If Ny is even, the pair (n1, n2) can be written as

n1 = Ny − 2dNy/4e − 2(`+ `′ − 3),

n2 = 2dNy/4e+ 2(`′ − 1)− 4.

It is also true that n2 ∈ h1,`′−1. It suffices to show that n1 ∈ h1,1. Due to even Ny , the qualtity n1 is even. For

2 ≤ `′ ≤ ` ≤ L, the maximum of n1 is upper bounded by

n1,max = Ny − 2dNy/4e − 2 ≤ Ny − 2×Ny/4− 2

= 2

(
Ny − 1

4
− 3

4

)
≤ 2

⌊
Ny − 1

4

⌋
,

where the last inequality is due to (Ny − 1)/4 − 3/4 ≤ b(Ny − 1)/4c for even Ny . On the other hand, the

minimum of n1 is given by

n1,min = Ny − 2dNy/4e − 2(2L− 3)

= Ny − 2dNy/4e − 4bNy/8c+ 2.

Since Ny/2 = bNy/4c+ dNy/4e and b2xc ≥ 2bxc, the quantity n1,min is lower bounded by

n1,min = Ny − 2

(
Ny
2
−
⌊
Ny
4

⌋)
− 4

⌊
Ny
8

⌋
+ 2

≥ 2× 2

⌊
Ny
8

⌋
− 4

⌊
Ny
8

⌋
+ 2 ≥ 2.

Therefore, n1 ∈ h1,1 because n1 is an even number between 2 and 2b(Ny − 1)/4c.
(Case 3) If Ny is even and h = 2bNy/4c − 2`+ 3, the pair (n1, n2) becomes

n1 = 2bNy/4c − 2(`+ `′) + 6, n2 = 2(`′ − 1)− 1.
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We will again show that n1 ∈ h1,1. Note that n1 is an even number. The maximum of n1 is bounded by

n1,max = 2bNy/4c − 2 ≤ 2b(Ny − 1)/4c.

The minimum of n1 is lower bounded by

n1,min = 2bNy/4c − 2L+ 6 = 2bNy/4c − 2bNy/8c+ 4

≥ 2bNy/4c − bNy/4c+ 4 ≥ 4.

The inequality is due to 2bxc ≤ b2xc. Therefore, n1 ∈ h1,1.

(Case 4) If Ny is even and h = 2dNy/4e+ 2`− 4, n1 and n2 are given by

n1 = 2(`− `′ + 1), n2 = 2dNy/4e+ 2(`′ − 1)− 4.

The membership of n1 can be shown as follows: Since 2 ≤ `′ ≤ ` ≤ L, we have

1 ≤ `− `′ + 1 ≤ L− 1 = bNy/8c ≤ b(Ny − 1)/4c,

so that n1 ∈ h1,1. For n2, if `′ ≥ 3, it is clear that n2 ∈ h1,`′−1. If `′ = 2, then n2 becomes

n2 = 2dNy/4e − 2 = 2b(Ny − 1)/4c.

The last equality can be shown by considering two cases: Ny = 4r and Ny = 4r + 2, where r is an integer.

Therefore, n1 ∈ h1,1.

So far we have proved the statement that h1,` ⊆ P`′ for 2 ≤ `′ ≤ ` ≤ L. It is required to prove h1,` ⊆
P`′ − (Ny − 1). Based on the definition of h1,`, it is evident that these sets are symmetric. That is, for every

h ∈ h1,`, there uniquely exists h′ ∈ h1,` such that h = Ny − 1 − h′. Since h′ ∈ h1,`, there must exist n′1 ∈ h1,1

and n′2 ∈ h1,`′−1 such that h′ = n′1 + n′2. We obtain

h = Ny − 1− h′ = Ny − 1− n′1 − n′2

= (Ny − 1− n′1) + (Ny − 1− n′2)− (Ny − 1).

It can be deduced that Ny − 1 − n′1 ∈ h1,1 and Ny − 1 − n′2 ∈ h1,`′−1, since these sets are symmetric. We have

h ∈ P`′ − (Ny − 1), which proves this theorem.
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