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Abstract—Direction-of-arrival (DOA) estimation finds appli-
cations in many areas of science and engineering. In these
applications, sparse arrays like minimum redundancy arrays,
nested arrays, and coprime arrays, can be exploited to resolve
O(N2) uncorrelated sources using N physical sensors. Recently,
it has been shown that correlation subspaces, which reveal
the structure of the covariance matrix, help to improve some
existing DOA estimators. However, the bases, the dimension,
and other theoretical properties of correlation subspaces remain
to be investigated. This paper proposes generalized correlation
subspaces in one and multiple dimensions. This leads to new
insights into correlation subspaces and DOA estimation with
prior knowledge. First, it is shown that the bases and the
dimension of correlation subspaces are fundamentally related to
difference coarrays, which were previously found to be important
in the study of sparse arrays. Furthermore, generalized corre-
lation subspaces can handle certain forms of prior knowledge
about source directions. These results allow one to derive a
broad class of DOA estimators with improved performance. It
is demonstrated through examples that using sparse arrays and
generalized correlation subspaces, DOA estimators with source
priors exhibit better estimation performance than those without
priors, in extreme cases like low SNR and limited snapshots.

Index Terms—DOA estimation, sparse arrays, difference
coarrays, generalized correlation subspaces, discrete prolate
spheroidal sequences.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation has been a popular
research field in array processing for several decades. This
problem aims to estimate the source directions from sensor
measurements. It arises in many practical scenarios such as
radio astronomy, radar, imaging, and communications [1]–[7].
DOA estimators such as MUSIC [8], ESPRIT [9], MODE
[10], and SPICE [11]–[13], to name a few [14]–[16] have been
developed for this purpose. These estimators are functional for
uniform linear arrays (ULAs). It is known that, for an ULA
with N physical sensors, these DOA estimators can identify
at most N − 1 uncorrelated sources [6].

Another family of DOA estimators is applicable to sparse
arrays, where the sensors are placed nonuniformly. Some well-
known sparse arrays include minimum redundancy arrays [17],
nested arrays [18], and coprime arrays [19]–[21]. All these
arrays have O(N2) consecutive elements in the difference
coarray, with N being the number of physical sensors. Due to
this property, sparse arrays can identify O(N2) uncorrelated
sources using N physical sensors and they lead to better
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spatial resolution than ULAs. DOA estimators for sparse ar-
rays consist of the augmented covariance matrix method [22],
[23], positive definite Toeplitz completion [24], [25], spatial
smoothing MUSIC (SS MUSIC) [18], [26], [27], dictionary
methods [28]–[31], and gridless approaches [32]–[34]. Note
that these estimators are also applicable to ULAs.

Recently, the elegant concept of correlation subspaces was
proposed by Rahmani and Atia [16], to improve DOA esti-
mation in a number of ways. For any given array geometry,
the correlation subspace is uniquely determined, and imposes
some implicit constraints on the structure of the covariance,
as we shall see. This subspace can be utilized in denoising
the sample covariance matrix. Then the source directions are
estimated from the denoised covariance matrix using off-the-
shelf DOA estimators, such as the MUSIC algorithm. Note that
the correlation subspace depends on the array configurations
and prior knowledge about the sources but is independent of
the choice of DOA estimators. Hence, a broad class of DOA
estimators are applicable to the denoised covariance matrix.
However, the explicit expressions for the correlation subspace
were not known, so its approximation was computed numer-
ically in [16]. Furthermore, the way in which the correlation
subspace is influenced by the array configuration, and by
partial knowledge about sources, was not explored.

Inspired by the concept of correlation subspaces introduced
in [16], this paper makes a number of new contributions. To
analyze the correlation subspace for any array configuration
explicitly, we first generalize the definition in [16] to formulate
what we call the generalized correlation subspace. This makes
it possible to incorporate some types of apriori information on
source locations, leading to improvements in DOA estimation.
Furthermore, we show that the (generalized) correlation sub-
spaces can be uniquely characterized in terms of the difference
coarray of the original physical array. In fact we will show how
to obtain simple and elegant closed form expressions for the
basis vectors of the correlation subspace, in terms of the sensor
geometry and the difference coarray geometry. Furthermore,
if source directions belong to apriori known intervals [1], [5],
[34]–[36], then it is shown that the generalized correlation
subspace finds close connections to discrete prolate spheroidal
sequences [37] defined on the difference coarrays. Similar
results can be developed in multiple dimensions, and are useful
in angle-Doppler estimation [38], [39], angle-delay estimation
[40], angle-range estimation [41], 2D DOA estimation [6], and
harmonic retrieval [42], [43]. These results not only facilitate
the implementation of the denoising framework as in [16] but
also offer better understanding of several DOA estimators with
prior knowledge about sources.
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The original work on correlation subspaces [16] did not em-
phasize any knowledge about the sources except that they are
uncorrelated1. In our work, we show how to incorporate prior
knowledge about source intervals with generalized correlation
subspaces. Furthermore, correlation subspaces for 1D and 2D
arrays were analyzed numerically in [16] while our work
provides closed-form characterizations of generalized corre-
lation subspaces for 1D and multidimensional arrays. Finally,
in our work, covariance matrix denoising using the generalized
correlation subspace is implemented more efficiently than that
in [16].

The outline of this paper is as follows: Section II reviews
correlation subspaces. Section III proposes the generalized cor-
relation subspaces while Section IV derives their expressions
for unknown and known source intervals. Section V discusses
the connections with existing methods while Section VI stud-
ies the generalized correlation subspace for multidimensional
arrays. Section VII presents several examples and numerical
simulations to demonstrate the advantages of the new methods
while Section VIII concludes this paper.

Notations: Scalars, vectors, matrices, and sets are denoted
by lowercase letters (a), lowercase letters in boldface (a),
uppercase letters in boldface (A), and letters in blackboard
boldface (A), respectively. An R-dimensional vector n is
denoted by (n(1), n(2), . . . , n(R)) or [n(1), n(2), . . . , n(R)]T ,
where n(r) is the rth coordinate. AT , A∗, and AH are
the transpose, complex conjugate, and complex conjugate
transpose of A. The Moore-Penrose pseudoinverse of A is
A†. If A has full column rank, then A† = (AHA)−1AH . The
Kronecker product between A and B is written as A⊗B. The
vectorization operator is defined as vec([a1,a2, . . . ,aN ]) =
[aT1 ,a

T
2 , . . . ,a

T
N ]T , where a1,a2, . . . ,aN are column vectors.

For two Hermitian matrices A and B, A � B is equivalent
to A − B being positive semidefinite. col(A) stands for the
column space of A. The support of a function f(x) is defined
as supp(f) = {x : f(x) 6= 0}, where x belongs to the domain
of f . The indicator function 1A(x) is one if x ∈ A and zero
otherwise. E[·] is the expectation operator. The cardinality of
a set A is denoted by |A|.

The bracket notation [27], [44] is reviewed using the fol-
lowing example. Assume the sensor locations are characterized
by an integer set S = {−2,−1, 0}. Assume the sensor mea-
surement on S is denoted by xS = [10, 11, 12]T . The square
bracket [xS]i represents the ith entry of xS while the triangular
bracket 〈xS〉n denotes the sample value on the support location
n. Hence, we have [xS]1 = 10, [xS]2 = 11, [xS]3 = 12,
〈xS〉−2 = 10, 〈xS〉−1 = 11, and 〈xS〉0 = 12. Similar
notations apply to matrices. For instance, if A = xSxTS , then
[A]i,j = [xS]i[xS]j and 〈A〉n1,n2

= 〈xS〉n1
〈xS〉n2

.

II. REVIEW OF CORRELATION SUBSPACES

Assume that D monochromatic sources impinge on an one-
dimensional sensor array2. The sensor locations are nd, where

1A numerical simulation with prior knowledge about source intervals was
shown in [16, Section IV-B2] but this idea was not developed further.

2For simplicity, we first assume 1D arrays. The multidimensional results
will be presented in Section VI.

n belongs to an integer set S ⊂ Z, d = λ/2, and λ is the
wavelength. Let θi ∈ [−π/2, π/2] be the DOA of the ith
source. The normalized DOA of the ith source is defined as
θ̄i = (d/λ) sin θi ∈ [−1/2, 1/2]. The measurements on the
sensor array S can be modeled as

xS =

D∑

i=1

AivS(θ̄i) + nS ∈ C|S|, (1)

where Ai is the complex amplitude of the ith source, vS(θ̄i) =
[ej2πθ̄in]n∈S are the steering vectors, and nS is the additive
noise term. It is assumed that the sources and noise are zero-
mean and uncorrelated. Namely, let s = [A1, . . . , AD,n

T
S ]T .

Then E[s] = 0 and E[ssH ] = diag(p1, . . . , pD, pn, . . . , pn),
where pi and pn are the power of the ith sources and the
noise, respectively.

The covariance matrix of xS can be expressed as

RS = E[xSx
H
S ] =

D∑

i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (2)

Rearranging the elements in (2) leads to

vec(RS − pnI) =

D∑

i=1

pic(θ̄i), (3)

where the correlation vectors c(θ̄i) are defined as

c(θ̄i) , vec(vS(θ̄i)v
H
S (θ̄i)) ∈ C|S|

2

. (4)

The relation (3) implies

vec(RS − pnI) ∈ span{c(θ̄i) : i = 1, 2, . . . , D} (5)

⊆ CS , span{c(θ̄) : −1/2 ≤ θ̄ ≤ 1/2}, (6)

where the linear span in (6) is defined as the set of all
vectors of the form

∑P
p=1 apc(θ̄p) where P ∈ N, ap ∈ C,

and −1/2 ≤ θ̄p ≤ 1/2 [45]. This subspace is called the
correlation subspace, denoted by CS . Eq. (6) also indicates
that vec(RS−pnI) is constrained in a certain way by CS , and
these constraints can be used in designing DOA estimators for
improved performance.

It is clear that CS is a finite-dimensional subspace of C|S|2 ,
due to (4). However, the definition of the correlation subspace
in (6) is computationally intractable since it involves infinitely
many c(θ̄). The correlation subspace was originally computed
by the following definition [16]:

Definition 1: The correlation subspace CS satisfies

CS = col(S), (7)

where the correlation subspace matrix S is defined as

S ,
∫ π/2

−π/2
c(θ̄)cH(θ̄)dθ ∈ C|S|

2×|S|2 . (8)

In Appendix A, we show that this definition is equivalent to
our revised definition given in (6). Note that this integral is
carried out over the DOA, θ ∈ [−π/2, π/2] and the relation
θ̄ = (sin θ)/2 can be utilized to evaluate (8). According to
(8), it can be shown that the correlation subspace matrix S is
Hermitian and positive semidefinite.
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It was shown in [16] that, the right-hand side of (7) can be
simplified further, based on the eigenvectors of S associated
with the nonzero eigenvalues. In particular, let the eigen-
decomposition of S be

S =
[
QCS QCS⊥

]
︸ ︷︷ ︸

Q

[
Λ1 0
0 0

] [
QCS QCS⊥

]H
, (9)

where the diagonal matrix Λ1 contains the positive eigenvalues
in the descending order and the columns of Q consist of the
orthonormal eigenvectors. Then, (7) and (9) lead to CS =
col(QCS). Namely, the correlation subspace CS is the column
space of the matrix QCS . Eqs. (7), (8), and (9) indicate that the
matrix S, its eigenvalues, its eigenvectors, and the correlation
subspace depend purely on the array configuration.

For any array geometry, the correlation subspace is uniquely
determined, and imposes some implicit constraints on the
structure of the covariance matrix, as indicated in (6). This
leads to a covariance-matrix denoising approach [16]. To begin
with, consider finite snapshot sensor measurements x̃S(k) for
k = 1, . . . ,K. The sample covariance matrix R̃S can be
estimated by

R̃S =
1

K

K∑

k=1

x̃S(k)x̃HS (k). (10)

The algorithm in [16] first denoises the sample covariance
matrix R̃S using the following convex program (P1):

(P1): R?
P1 , arg min

R
‖R̃S − pnI−R‖22 (11)

subject to (I−QCSQ
†
CS)vec(R) = 0, (12)

R � 0, (13)

where the noise power pn is estimated from the eigenvalues
of R̃S and ‖ · ‖2 denotes the spectral norm of a matrix (i.e.,
the largest singular value). The cost function in (11) suggests
that the matrix R?

P1 resembles
∑D
i=1 pivS(θ̄i)v

H
S (θ̄i) in (2).

The constraint (12) ensures that vec(R?
P1) belongs to the

correlation subspace while (13) indicates that R?
P1 is positive

semidefinite.
The final stage is to perform DOA estimation on R?

P1. It
was shown in [16] that, the MUSIC algorithm on R?

P1 can
exhibit better estimation performance than that on R̃S. It
should be noted that the DOA estimators are not restricted
to the MUSIC algorithm. Other estimators, such as ESPRIT,
MODE, and SPICE, can also be exploited. This result shows
that the structure of the covariance matrix, as specified by
the correlation subspace, helps to improve the estimation
performance.

Summarizing, the DOA estimator associated with the corre-
lation subspace is composed of the following three steps [16]:

Step 1: Correlation subspace. For a given array geometry,
numerically calculate the correlation subspace matrix S and
its eigen-decomposition, as in (8) and (9), respectively. Save
the matrix QCS for the correlation subspace.

Step 2: Denoising. Given the sensor measurements, evalu-
ate the sample covariance matrix R̃S, as in (10). Then solve
the optimization problem (P1). Let the optimal solution be
R?

P1.

Step 3: DOA estimation. In the simulations of [16], the
MUSIC algorithm is applied to R?

P1.
Remarks on Step 1: Note that this step needs to be done

only once per array. Once the matrix QCS is obtained, it can
be used repeatedly in Step 2. To calculate QCS , the numerical
integration was utilized in [16]. This step is typically done
by choosing a dense grid of the parameter θ, which only
approximates the integral in (8). Furthermore, the numerical
eigen-decomposition in (9) introduces perturbations on zero
eigenvalues, making it challenging to determine the correlation
subspace precisely. It is desirable to mitigate the negative
effects caused by numerical computations. It will be shown
in Theorem 1 that, the correlation subspace can be fully
characterized by simple, elegant, and closed-form expressions.

Remarks on Step 2: The convex optimization problem (P1)
can be solved by numerical solvers. However, it requires
several numerical iterations to obtain the optimal solution,
which could be an issue if real-time processing is needed. To
avoid high computational cost, (P1) is approximated by two
sub-problems (P1a) and (P1b) in [16]:

(P1a): R?
P1a , arg min

R
‖R̃S − pnI−R‖2F (14)

subject to (I−QCSQ
†
CS)vec(R) = 0, (15)

(P1b): R?
P1b , arg min

R
‖R−R?

P1a‖22 (16)

subject to R � 0. (17)

In particular, we first compute the solution to (P1a) us-
ing the orthogonal projection onto the correlation subspace,
vec(R?

P1a) = QCSQ
†
CSvec(R̃S−pnI). Then the solution R?

P1b
can be obtained explicitly from the eigen-decomposition of
R?

P1a. It was demonstrated in [16] that this two-step approach
can be readily implemented with a moderate degradation in
the estimation performance.

It can be seen that we need to estimate the noise power pn
first before solving either (P1) or (P1a). This extra processing
is not desirable if the source directions are the only parameters
of interest. In Section V, we will present another optimization
problem that enjoys good DOA estimation performance with-
out estimating the noise power.

Remarks on Step 3: If R?
P1 ∈ C|S|×|S|, then the MUSIC

algorithm on R?
P1 can resolve at most |S| − 1 uncorre-

lated sources, regardless of array configurations [6]. However,
sparse arrays can identify more uncorrelated sources than
sensors by using augmented covariance matrices [23], positive
definite Toeplitz completion [24], [25], and spatial smoothing
MUSIC (SS MUSIC) [18], [19], [26], [27]. Furthermore, these
approaches usually provide better spatial resolution than the
MUSIC algorithm [18], [19], [23]–[27]. Hence, we will use
sparse arrays and SS MUSIC in the examples of Section VII.

Furthermore, it was demonstrated numerically in [16] that,
prior knowledge about source directions can be embedded
into the correlation subspace by changing the intervals of
integration in (8). However, the influences of prior knowledge
about the correlation subspace and the optimization problem
have not been studied in detail. These above points will be
addressed by generalized correlation subspaces, as we will
present next.
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Fig. 1. The density function in (18) (red), and the constant density function
in Section IV-A (blue).

III. GENERALIZED CORRELATION SUBSPACES

The main difficulty in deriving the closed-form expressions
for CS using (7), (8), and (9) is as follows. Eq. (8) implies
that the entries of S are related to Bessel functions, making
it complicated to obtain analytical forms of (9). In order to
derive closed-form expressions for CS , we will first propose
the generalized correlation subspace GCS(ρ), which is param-
eterized by a nonnegative density function ρ(θ̄). Then it will
be shown that GCS(ρ) depends only on the support of ρ(θ̄),
and is invariant to its exact shape. Using this property, we
can derive simple and closed forms for CS by selecting some
density functions ρ(θ̄) such that 1) CS = GCS(ρ) and 2) it is
straightforward to derive closed-form expressions for GCS(ρ).

As a motivating example, let us consider the definition of S
in (8). Since θ̄ = 0.5 sin θ, we have dθ = 2(1− (2θ̄)2)−1/2dθ̄.
Hence, (8) can be rewritten as

S =

∫ 1/2

−1/2

c(θ̄)cH(θ̄)
(

2(1− (2θ̄)2)−1/2
)

︸ ︷︷ ︸
the density function

dθ̄. (18)

Note that (18) can be regarded as a weighted integral with
the density function 2(1 − (2θ̄)2)−1/2 over θ̄ ∈ [−1/2, 1/2].
Hence, we can generalize the correlation subspace matrix by
varying the density function in (18). It is formally defined as

Definition 2: Let the correlation vector c(θ̄) be defined as
in (4). Let ρ(θ̄) be a nonnegative Lebesgue integrable function
over the set [−1/2, 1/2]. The generalized correlation subspace
matrix associated with ρ(θ̄) is defined as

S(ρ) =

∫ 1/2

−1/2

c(θ̄)cH(θ̄)ρ(θ̄)dθ̄. (19)

It can be seen that (18) is a special case of Definition 2, with
ρ(θ̄) = 2(1 − (2θ̄)2)−1/21[−1/2,1/2](θ̄). The density function
ρ(θ̄) quantifies the importance of c(θ̄)cH(θ̄) in S(ρ), across
different θ̄. This ρ(θ̄) is shown in the dashed curve of Fig. 1.
Note that ρ(θ̄) grows rapidly as θ̄ approaches ±0.5.

Based on Definition 1, the generalized correlation subspace
can be defined as follows:

Definition 3: Let S(ρ) be the generalized correlation sub-
space matrix associated with ρ(θ̄), as in (19). The generalized
correlation subspace is defined as GCS(ρ) = col(S(ρ)).

It can be seen from Definition 2 and 3 that the general-
ized correlation subspaces are parameterized by the density
function ρ(θ̄). For any given support of ρ(θ̄), the generalized
correlation subspace is invariant to the exact shape of ρ(θ̄)
under that support, as indicated by the following lemma:

Lemma 1: Let ρ1(θ̄) and ρ2(θ̄) be two nonnegative Lebesgue
integrable functions over the set [−1/2, 1/2]. If supp(ρ1) =
supp(ρ2), then GCS(ρ1) = GCS(ρ2).

Proof: See Appendix B.
Corollary 1: Let the density function in (18) be ρ1(θ̄) =

2(1− (2θ̄)2)−1/21[−1/2,1/2](θ̄) and the constant density func-
tion be ρ2(θ̄) = 1[−1/2,1/2](θ̄). Then CS = GCS(ρ1) =
GCS(ρ2).

The density functions ρ1(θ̄) and ρ2(θ̄) are illustrated in
Fig. 1. It can be observed that these density functions share
the same support [−1/2, 1/2]. Furthermore, Corollary 1 also
enables us to analyze the correlation subspace readily through
the generalized correlation subspace GCS(ρ2). The details will
be developed in Section IV.

IV. PROPERTIES OF GENERALIZED CORRELATION
SUBSPACES

In this section, the generalized correlation subspaces for
several density functions will be investigated. It will be shown
that the correlation subspace and the generalized correlation
subspace depend on the difference coarray. Furthermore,
we will derive simple, explicit, and computationally tractable
representations of the correlation subspace and the generalized
correlation subspace in certain cases.

First, it is known from [44] that the correlation vector (4)
can be rewritten as:

c(θ̄i) = JvD(θ̄i), (20)

where vD(θ̄i) = [ej2πθ̄im]m∈D are the steering vectors on
the difference coarray. Here the difference coarray D and the
matrix J [44] are defined as:

Definition 4 (Difference coarray): The difference coarray
D contains the differences between the elements in S, i.e.,
D = {n1 − n2 : ∀n1, n2 ∈ S}.

Definition 5 (The matrix J): The binary matrix J has size
|S|2-by-|D|. The columns of J satisfy 〈J〉:,m = vec(I(m)) for
m ∈ D, where I(m) ∈ {0, 1}|S|×|S| is given by

〈I(m)〉n1,n2
=

{
1, if n1 − n2 = m,

0, otherwise.
(21)

Here the bracket notation 〈·〉n1,n2
is defined in Section I.

Example 1: Assume the sensor locations are characterized
by an integer set S = {0, 2}. According to Definition 4, the
difference coarray becomes D = {−2, 0, 2}. Next we will
evaluate the matrix J, as in Definition 5. First we consider the
matrices I(m) for m ∈ D as follows:

I(0) =

n2=0 2[ ]
n1=0 1 0

2 0 1
, I(2) =

n2=0 2[ ]
n1=0 0 0

2 1 0
,
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where n1 and n2 are marked in the corresponding rows and
columns. Furthermore, due to (21), it can be shown that
I(−2) = (I(2))T . Hence, the matrix J can be written as

J =

vec(I(−2)) vec(I(0)) vec(I(2))





0 1 0
0 0 1
1 0 0
0 1 0

, (22)

where the first, the second, and the third column of J corre-
spond to the coarray index m = −2, 0, 2, respectively. Finally,
we will verify (20) in this example. Starting with (4), the
correlation vector is given by

c(θ̄i) = vec

([
1

ej2πθ̄i·2

] [
1 e−j2πθ̄i·2

])
=




1

ej4πθ̄i

e−j4πθ̄i

1


 .

Similarly, the quantity JvD(θ̄i) can be calculated as

JvD(θ̄i) =




0 1 0
0 0 1
1 0 0
0 1 0






ej2πθ̄i·(−2)

1

ej2πθ̄i·2


 =




1

ej4πθ̄i

e−j4πθ̄i

1


 .

This result verifies (20).
Using (20) and Definition 2, the generalized correlation

subspace matrix can be expressed in terms of the difference
coarray as in Lemma 2:

Lemma 2: The generalized correlation subspace matrix
satisfies S(ρ) = JSD(ρ)JH , where J is defined in Definition
5 and SD(ρ) is given by

SD(ρ) =

∫ 1/2

−1/2

vD(θ̄)vHD (θ̄)ρ(θ̄)dθ̄. (23)

Note that the matrix SD(ρ) depends on the difference coarray,
rather than the physical sensor locations. This property sug-
gests that the generalized correlation subspace is fundamen-
tally related to the difference coarray. This is indeed true and
we will elaborate this point later. Furthermore, Lemma 2 also
allows us to readily analyze the matrix S(ρ) of size |S|2-by-
|S|2, by examining a smaller matrix SD(ρ) of size |D|-by-|D|.
Next, we will consider two simple examples of the density
function as follows:

• The density function is a constant over θ̄ ∈ [−1/2, 1/2].
Namely, ρ(θ̄) = 1[−1/2,1/2](θ̄).

• The density function is a constant over some known
intervals I. That is, ρ(θ̄) = 1I(θ̄). This case corresponds
to known source intervals.

In both cases, we will present the closed-form expressions
of SD(ρ) and S(ρ), from which the generalized correlation
subspaces can be analyzed systematically.

A. The constant density function

In this case, the entry of SD(1[−1/2,1/2]) associated with
coarray locations m1,m2 ∈ D becomes

〈SD(1[−1/2,1/2])〉m1,m2
=

∫ 1/2

−1/2

ej2πθ̄(m1−m2)dθ̄ = δm1,m2
,

(24)

since m1 and m2 are integers. Substituting (24) into Lemma
2 gives

S(1[−1/2,1/2]) = JJH . (25)

In order to obtain the eigen-decomposition of S(1[−1/2,1/2]),
we invoke the definition of the weight function and a lemma
regarding the matrix J:

Definition 6 (Weight function w(m)): The weight function
w(m) of an array S is defined as the number of sensor pairs
with coarray index m. Namely, w(m) = |{(n1, n2) ∈ S2 :
n1 − n2 = m}| for m ∈ D.

Lemma 3: JHJ = W , diag(w(m))m∈D. Namely, J has
orthogonal columns and the norm of the column associated
with the coarray index m is

√
w(m).

Proof: It was proved in [44] that the columns of J are
orthogonal. It suffices to consider the norms of the individual
columns of J. For the coarray location m ∈ D, the norm of
the associated column is

‖vec(I(m))‖22 =
∑

n1,n2∈S
|〈I(m)〉n1,n2

|2

= the number of ones in I(m) = w(m),

which proves this lemma.
Example 2: Assume the sensor locations are given by S =
{0, 2}, as in Example 1. Then the weight functions w(m) are
given by

w(−2) = |{(0, 2)}| = 1, w(0) = |{(0, 0), (2, 2)}| = 2,

w(2) = |{(2, 0)}| = 1.

Hence the matrix W in Lemma 3 can be written as W =
diag(w(−2), w(0), w(2)) = diag(1, 2, 1). Then, Lemma 3 can
be verified using (22) and W.

Due to Definition 6 and Lemma 3, the generalized correla-
tion subspace matrix S(1[−1/2,1/2]) can be expressed as

S(1[−1/2,1/2]) = (JW−1/2)W(JW−1/2)H , (26)

where the sizes of these terms are JW−1/2 ∈ C|S|2×|D| and
W ∈ C|D|×|D|. Eq. (26) also indicates that the matrix JW−1/2

corresponds to the orthonormal eigenvectors while the diago-
nal matrix W is associated with the eigenvalues. In particular,
the positive eigenvalues and the associated eigenvectors of
S(1[−1/2,1/2]) are given by

Positive eigenvalues of S(1[−1/2,1/2]) = w(m), (27)

Eigenvectors of S(1[−1/2,1/2]) =
vec(I(m))√

w(m)
, (28)

where m ∈ D. Note that (27) and (28) can be calculated readily
from the array geometry using Definition 6 and 5, respectively.
Namely, the eigen-decomposition of S(1[−1/2,1/2]) can be
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evaluated without using the numerical integration in Definition
2 and the numerical eigen-decomposition on S(1[−1/2,1/2]).

Properties of S(1[−1/2,1/2]): The following list some prop-
erties regarding the eigen-structure of S(1[−1/2,1/2]). Some
items are direct consequences of the properties of the weight
function w(m), as in [46, Lemma 1].

1) The eigenvalues of S(1[−1/2,1/2]) are nonnegative inte-
gers, due to (26), (27), and [46, Lemma 1-1].

2) The number of nonzero eigenvalues is |D|, which is the
size of the difference coarray. Here repeated eigenvalues
are counted separately.

3) The largest eigenvalue of S(1[−1/2,1/2]) is w(0) = |S|
with algebraic multiplicity 1. This is a direct conse-
quence of [46, Lemma 1-4].

4) For any nonzero eigenvalue that is not the largest,
the associated algebraic multiplicity is an even positive
integer, due to [46, Lemma 1-2].

5) The eigenvalue zero has algebraic multiplicity |S|2−|D|.
6) The orthonormal eigenvectors associated with nonzero

eigenvalues are given in (28).
7) For all the eigenvalues of S(1[−1/2,1/2]), the geometric

multiplicities achieve the algebraic multiplicities.
Finally, based on (26), the generalized correlation subspace

GCS(1[−1/2,1/2]) becomes

col(S(1[−1/2,1/2])) = col(JW−1/2) = col(J). (29)

The significance of (29) is that, the correlation subspace in
(6) can be characterized in closed forms, as in the following
theorem:

Theorem 1: Let the matrix J be defined as in Definition 5.
Then the correlation subspace satisfies

CS = col(J). (30)

Proof: Corollary 1 indicates that CS = GCS(ρ1) =
GCS(ρ2). The relation GCS(ρ2) = col(J) is due to (29).

This theorem indicates that the correlation subspace is fully
characterized by the binary matrix J, which can be readily
computed from sensor locations and the difference coarray us-
ing Definition 5. Namely, to compute the correlation subspace,
the numerical integration (8) and the eigen-decomposition (9)
can be avoided completely. Due to Theorem 1 and Lemma 3,
the dimension of the correlation subspace is given by

Corollary 2: The dimension of the correlation subspace is
the size of the difference coarray, i.e., dim(CS) = |D|.

B. The constant density function with known source intervals

Here we will study the generalized correlation subspace
with known source intervals. This scenario arises in practical
applications such as stationary radar and the diagnosis of
rotating machines in industrial environments [47].

Table I summarizes the procedure for the generalized corre-
lation subspaces with known source intervals. For a given array
configuration S and source intervals I, we can calculate SD(1I)
explicitly using either (32), (38), or (42), as we shall explain
later. The eigen-decomposition of SD(1I) suggests that SD(1I)
can be approximated by ΨL ·diag(λ1, λ2, . . . , λL)·ΨH

L , where

TABLE I
GENERALIZED CORRELATION SUBSPACES WITH KNOWN SOURCE

INTERVALS

Input: Array configuration S, source intervals I, and error tolerance δ.
1) Evaluate the matrix J according to Definition 5.
2) Based on I, compute SD(1I) using either (32), (38), or (42).
3) Numerical eigen-decomposition: SD(1I) = ΨΛΨH .

a) Eigenvectors: Ψ = [ψ1,ψ2, . . . ,ψ|D|]; ΨHΨ = I.
b) Eigenvalues: Λ = diag(λ1, λ2, . . . , λ|D|); λ1 ≥ · · · ≥ λ|D| ≥ 0.

4) Determine a positive integer L using (44).
5) Construct ΨL = [ψ1,ψ2, . . . ,ψL].
Output: GCS(1I) is approximated by col(JΨL).

the related quantities are given in Table I.3 This property leads
to an approximation of the generalized correlation subspace
GCS(1I) ≈ col(JΨL). Note that Table I is applicable to a
given array S and given source intervals I. In the following
development, we will study the generalized correlation sub-
spaces based on these factors.

1) Hole-free difference coarrays and I = [−α/2, α/2]: In
this case, the density function is assumed to be

ρ(θ̄) = 1[−α/2,α/2](θ̄) =

{
1, if − α/2 ≤ θ̄ ≤ α/2,
0, otherwise,

(31)

where 0 < α < 1. Now we can derive the expression
for the generalized correlation subspace matrix. According
to Lemma 2, the entry of SD(1[−α/2,α/2]) associated with
coarray locations m1,m2 ∈ D is given by

〈SD(1[−α/2,α/2])〉m1,m2 =

∫ α/2

−α/2
ej2πθ̄(m1−m2)dθ̄

= α · sinc(α(m1 −m2)), (32)

where the normalized sinc function sinc(x) is 1 for x = 0
and sin(πx)/(πx) otherwise. The eigen-decomposition of
SD(1[−α/2,α/2]) is assumed to be

SD(1[−α/2,α/2]) = ΨΛΨH , (33)

where the matrices Ψ and Λ are given by Ψ =
[ψ1,ψ2, . . . ,ψ|D|] and Λ = diag(λ1, λ2, . . . , λ|D|), respec-
tively. Here the eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ λ|D| ≥ 0
and ψ1,ψ2, . . . ,ψ|D| are the associated orthonormal eigen-
vectors.

Note that the matrix SD(1[−α/2,α/2]) depends purely on the
difference coarray D and the parameter α. Next we assume
the difference coarray D is hole-free. Namely, D is composed
of consecutive integers. For instance, Fig. 2 depicts array
configurations like (a) ULA [6], (b) nested array [18], (c)
coprime array [19], and (d) super nested array [21]. It can be
observed from the nonnegative part of the difference coarray
that (a), (b), and (d) have hole-free difference coarrays while
(c) does not. These array configurations will be elaborated in
Section VII later.

3The symbols ψk , ΨL, and Ψ are reserved for the eigenvectors of the
matrix SD(1I) while the notations vk and VL represent the discrete prolate
spheroidal sequences.
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(a) ULA:

S: •
0
•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9

D+: •
0
•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9

(b) Nested array:

S: •
1
•
2
•
3
•
4
•
5
•
6
×××××•

12
×××××•

18
×××××•

24
×××××•

30

D+: •
0
•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9
•
10
•
11
•
12
•
13
•
14
•
15
•
16
•
17
•
18
•
19
•
20
•
21
•
22
•
23
•
24
•
25
•
26
•
27
•
28
•
29

(c) Coprime array:

S: •
0
××•

3
×•

5
•
6
××•

9
•
10
×•

12
××•

15
××××•

20
××××•

25

D+: •
0
•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9
•
10
•
11
•
12
•
13
•
14
•
15
•
16
•
17
×•

19
•
20
×•

22
××•

25

(d) Super nested array:

S: •
1
×•

3
×•

5
××•

8
×•

10
×•

12
×××××•

18
×××××•

24
××××•

29
•
30

D+: •
0
•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9
•
10
•
11
•
12
•
13
•
14
•
15
•
16
•
17
•
18
•
19
•
20
•
21
•
22
•
23
•
24
•
25
•
26
•
27
•
28
•
29

Fig. 2. The sensor locations S and the nonnegative part of the difference
coarrays D+ for (a) ULA with 10 sensors, (b) the nested array with N1 =
N2 = 5, (c) the coprime array with M = 3, N = 5, and (d) the super nested
array with N1 = N2 = 5, Q = 2. Here bullets denote elements in S or D+

while crosses represent empty space.
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0

0.2

0.4

0.6

0.8

1

Index k

E
ig

en
va

lu
es
λ
k

(a)

−30 −20 −10 0 10 20 30
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0.2

Coarray location

E
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en
ve

ct
or

s

ψ1 = v1 ψ2 = v2 ψ3 = v3 ψ4 = v4

(b)
Fig. 3. (a) The eigenvalues and (b) the first four eigenvectors of the
generalized correlation subspace matrix S(1[−α/2,α/2]) in Example 3. Here
the difference coarray D = {−29, . . . , 29} and α is 0.1.

For arrays with hole-free difference coarrays, the eigenvec-
tors ψk are known to be discrete prolate spheroidal sequences
(DPSS). That is, the matrix SD(1[−α/2,α/2]) owns

Eigenvalues of SD(1[−α/2,α/2]) = λk, (34)

Eigenvectors of SD(1[−α/2,α/2]) , ψk = vk, (35)

where v1,v1, . . . ,v|D| denote DPSS on the difference coarray
D. Note that DPSS were studied comprehensively in [37], [48]
and they arise in various fields such as multitapers [49], time-
frequency analysis [50], eigenfilters [51], [52], and MIMO
radar [53]. Here several properties of the eigenvalues λk and
the DPSS vk are reviewed briefly using the following example:

Example 3: Consider the super nested array with N1 =
N2 = 5 [21]. The sensor locations are depicted in Fig.
2(d). The difference coarray becomes D = {−29, . . . , 29}

(hole-free) and |D| = 59. We also choose the parameter
α = 0.1. According to (34) and (35), the eigenvalues λk
and the eigenvectors are illustrated in Fig. 3. It was shown
in [37] that the eigenvalues λk are distinct, and the first
bα|D|c eigenvalues are close to, but less than one, where
b·c is the floor function. As the index k exceeds bα|D|c, the
magnitude of the eigenvalues decays exponentially [37]. This
property indicates that the matrix SD(1[−α/2,α/2]) can be well-
approximated by a matrix of rank L. Namely,

SD(1[−α/2,α/2]) ≈ VL · diag(λ1, λ2, . . . , λL) ·VH
L , (36)

where bα|D|c ≤ L ≤ |D| and VL = [v1,v2, . . . ,vL] consists
of the first L DPSS. Note that the exact value of L depends
on the approximation error of (36), which will be elaborated
in (44) later. In this example, bα|D|c = 5, This means that
the first five eigenvalues are close to one, as depicted in Fig.
3(a). The DPSS v1, v2, v3, and v4 are illustrated in Fig. 3(b).
These DPSS can be proved to be orthogonal, real, and unique
up to scale [37]. Furthermore, these DPSS satisfy 〈vk〉−m =
(−1)k+1〈vk〉m for m ∈ D. Namely, they are either even or
odd symmetric.

Substituting (36) into Lemma 2, the generalized correlation
subspace matrix can be approximated by

S(1[−α/2,α/2]) ≈ JVL · diag(λ1, λ2, . . . , λL) · (JVL)H .

Since the matrix JVL has full column rank, the generalized
correlation subspace can be characterized by the following
theorem:

Theorem 2: Let the density function be 1[−α/2,α/2] for 0 <
α < 1. Assume the difference coarray D is hole-free. Then
we have

GCS(1[−α/2,α/2]) ≈ col(JVL), (37)

where the columns of VL contain the first L DPSS on D. The
parameter L is obtained by (44), for a given error tolerance δ.

The significance of Theorem 2 is that, the interval infor-
mation α is embedded in the matrix VL. The approximation
VL is constructed by selecting the DPSS associated with
the largest L eigenvalues of SD(1[−1/2,1/2]). The details in
choosing the parameter L will be developed in (43) further.
Note that Theorem 2 can be utilized to denoise the sample
covariance matrix, as we shall present in Section V.

2) Hole-free difference coarrays and I = [θ̄min, θ̄max]: Let
us consider another scenario where the known interval is not
centered around the origin, such as [θ̄min, θ̄max] with −0.5 <
θ̄min < θ̄max < 0.5. In this case, the density function can be

ρ(θ̄) = 1[θ̄min,θ̄max](θ̄) =

{
1, if θ̄min ≤ θ̄ ≤ θ̄max,

0, otherwise.

Then, due to Lemma 2, the entry of SD(1[θ̄min,θ̄max]) associated
with the coarray location m1,m2 ∈ D becomes

〈SD(1[θ̄min,θ̄max])〉m1,m2

= ej2πθ̄avgm1 · α · sinc(α(m1 −m2)) · e−j2πθ̄avgm2 , (38)
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where θ̄avg = (θ̄max + θ̄min)/2 and α = θ̄max − θ̄min are
known. Using similar arguments in Section IV-B1, the matrix
SD(1[θ̄min,θ̄max]) owns

Eigenvalues of SD(1[θ̄min,θ̄max]) = λk, (39)

Eigenvectors of SD(1[θ̄min,θ̄max]) = diag(ej2πθ̄avgm)m∈D × vk,

(40)

where λk are defined in (33) and vk are the DPSS. These
eigenvectors can be regarded as the modulated version of
DPSS. Hence, following similar arguments in Example 3, the
generalized correlation subspace can be approximated by

GCS(1[θ̄min,θ̄max]) ≈ col(J · diag(ej2πθ̄avgm)m∈D ·VL), (41)

where the matrix J is defined in Definition 5. The matrix
VL = [v1,v2, . . . ,vL] includes the first L DPSS, where L
will be chosen as in (44).

3) Hole-free difference coarrays and unions of multiple
source intervals: In this case, the interval information I is
given by ∪Pp=1[θ̄min,p, θ̄max,p], where [θ̄min,p, θ̄max,p] for p =
1, 2, . . . , P are non-overlapping intervals. The density function
is assumed to be 1I(θ̄). Using (38) across all intervals yields

〈SD(1I)〉m1,m2

=

P∑

p=1

αpe
j2πθ̄avg,p(m1−m2)sinc(αp(m1 −m2)), (42)

where θ̄avg,p = (θ̄max,p + θ̄min,p)/2 is the centroid of the pth
interval and αp = θ̄max,p − θ̄min,p is the width of the pth
interval. Here the indices m1,m2 ∈ D. Although the entries of
SD(1I) are sums of modulated sinc functions, the eigenvectors
of SD(1I) cannot be expressed in terms of DPSS in general.
In this case, the generalized correlation subspace GCS(1I) has
to be evaluated numerically using Table I.

4) Difference coarrays with holes: The results in Section
IV-A hold true for 1D arrays, regardless of the difference coar-
rays. However, it is assumed in Section IV-B1 to IV-B3 that the
difference coarrays are hole-free. These arrays with hole-free
difference coarrays include ULA [6], minimum redundancy
arrays [17], nested arrays [18], and super nested arrays [21].
For such arrays, Eqs. (37) and (41) are applicable.

However, for arrays containing holes in the difference
coarrays, such as minimum hole arrays [54], coprime arrays
[19], and some generalizations of coprime arrays [20], Eqs.
(37) and (41) are not applicable in general. It is because the
hole-free property of the difference coarray is used to derive
(35) and (40). In this case, SD(1I) can still be computed
from (32), (38), and (42) accordingly. Then, the generalized
correlation subspaces need to be calculated numerically using
Table I.

The choice of the parameter L: Here we will present the
details on the parameter L in Section IV-B. Let Ψ`Λ`Ψ

H
`

be the rank-` approximation of SD(1I), where the notations
are consistent with those in Table I. Let the matrix Λ` be
diag(λ1, . . . , λ`). Then the relative error E(`) is

E(`) ,
‖Ψ`Λ`Ψ

H
` − SD(1I)‖2F

‖SD(1I)‖2F
=

∑|D|
k=`+1 λ

2
k∑|D|

k=1 λ
2
k

. (43)

1 2 3 4 5 6 7 8 9 10 11
10−15

10−10

10−5

100

`

E
(`
)

Fig. 4. The dependence of the relative error E(`) on the parameter `, where
E(`) is defined in (43) and the eigenvalues are shown in Fig. 3(a).

CS + I

Approximation of
GCS(1[−α/2,α/2]) + I

p?2

p?1

vec(R̃S)

Fig. 5. The geometric interpretation of sample covariance matrix denoising
using generalized correlation subspaces (Problem (P2)). The sample covari-
ance matrix is denoted by R̃S. The vectors p?1 and p?2 are the orthogonal
projections of vec(R̃S) onto CS + I and onto a subspace that approximates
GCS(1[−α/2,α/2]) + I, respectively. Here I = span(vec(I)) and the sum
between subspaces A and B is defined as A+B = {a+ b : a ∈ A, b ∈ B}.

For a given error tolerance 0 ≤ δ � 1, L is the minimum `
such that E(`) < δ, i.e.,

L = min
`∈Z, 1≤`≤|D|

` subject to E(`) < δ. (44)

Then this L is used in computing the generalized correlation
subspace.

In particular, the smaller δ is, the larger L is. For instance,
Fig. 4 plots the relative error E(`), where the eigenvalues are
given in Fig. 3(a). It can be seen that, if the error tolerance
δ = 10−5, then the parameter L = 8. If δ = 10−10, then we
have L = 10.

V. CONNECTIONS WITH EXISTING METHODS

In this section, we will discuss a covariance matrix denois-
ing framework associated with the (generalized) correlation
subspace. This method, denoted by problem (P2), can be
regarded as a modified version of the optimization problem
(P1). This problem (P2) can be solved by simple, closed-form,
and computationally tractable expressions, unlike the problem
(P1). We also relate it to redundancy averaging, which is
a well-known processing technique in coarray-based DOA
estimators, as shown in Example 4. This idea can be extended
to the case of known source intervals, as in Example 5.

To develop some feelings for this method, Fig. 5 demon-
strates the main idea of (P2), where the sample covariance
matrix R̃S is defined in (10). For a given element vec(R̃S), we
can calculate its orthogonal projection p?1 onto the subspace
CS + I, where I = span(vec(I)) and the sum of subspaces
A and B is defined as A + B = {a + b : a ∈ A, b ∈ B}.
Furthermore, if the source interval is known to be [−α/2, α/2],
then the projection can be refined as p?2. These projections p?1
and p?2 can be matricized as indefinite Hermitian matrices, to
which some existing DOA estimators can be applied.
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The rationale for (P2) is based on the following chain of
arguments. According to (6), we have vec(RS − pnI) ∈ CS .
This result implies that vec(RS) can be decomposed as
pnvec(I) plus a vector in CS . Namely, vec(RS) ∈ CS + I,
where I = span(vec(I)). Hence, in the finite snapshot
scenario, we can find the vector p? in CS + I that minimizes
the Euclidean distance to vec(R̃S). More generally, if the
prior knowledge about sources is available, as embedded in
the generalized correlation subspace GCS(ρ), then we have
vec(RS) ∈ GCS(ρ) + I. This idea leads to the following
convex program:

(P2): p? , arg min
p

‖vec(R̃S)− p‖22 subject to (45)

(I−QGCS(ρ)+IQ
†
GCS(ρ)+I)p = 0, (46)

where the columns of QA are the bases for the subspace A.
The solution to (P2) is given by

p? = QGCS(ρ)+IQ
†
GCS(ρ)+Ivec(R̃S). (47)

Note that (47) can be evaluated directly, given the sample
covariance matrix R̃S and the generalized correlation subspace
GCS(ρ). The computational complexity of (47) is much less
than solving (P2) numerically. It can be observed that (47)
shares similar expressions with the solution to (P1a). The main
difference is that, estimating the noise power pn is required
in (P1a), but not in (47).

Next, we will demonstrate some instances of (47) using the
generalized correlation subspaces in Section IV.

Example 4: First let us consider the correlation subspace.
Recall that CS = GCS(1[−1/2,1/2]) = col(J), as in Theorem
1. The subspace CS + I becomes

CS + I = col(J) + span(vec(I)) = col([J,Je0]) = col(J).

Here we use the property that vec(I) = Je0 [44]. The column
vector e0 ∈ {0, 1}|D| satisfies 〈e0〉m = δm,0 for m ∈ D. Next,
according to (47), the orthogonal projection p?1, as shown in
Fig. 5, can be written as

p?1 = Jx̃D ∈ C|S|
2

, x̃D , J†vec(R̃S) ∈ C|D|. (48)

Due to (48) and Lemma 3, the sample value of x̃D at the
coarray location m ∈ D is given by

〈x̃D〉m =
1

w(m)

∑

n1−n2=m

〈R̃S〉n1,n2 , (49)

where n1, n2 ∈ S. Eq. (49) was previously known as re-
dundancy averaging [22], [24], [25] and [27, Definition 3].
The vector x̃D is known to be the sample autocorrelation
vector on the difference coarray, which was used extensively
in DOA estimators such as the augmented covariance matrix
[22] positive definite Toeplitz completion [24], [25], and SS
MUSIC [18], [27]. This example shows that, redundancy
averaging is closely related to (47), which uses the concept of
the correlation subspace.

Example 5: Eq. (47) can be used to derive a large class of
DOA estimators with prior knowledge about source directions.
According to Section IV-B, if the difference coarray is hole-
free and the known source interval is [−α/2, α/2], then the

generalized correlation subspace GCS(ρ) can be approximated
by col(JVL), as in Theorem 2. Hence the subspace GCS(ρ)+
I is approximated by

col(JVL) + span(vec(I)) = col([JVL,Je0]) = col(JUL),

where UL , [VL, e0]. Then the associated orthogonal pro-
jection p?2, as illustrated in Fig. 5, is given by

p?2 = (JUL)(JUL)†vec(R̃S) (50)

Eq. (50) shows that the orthogonal projection can be evaluated
using the matrix J and the DPSS VL. If the matrix JUL has
full column rank, then Eq. (50) can rewritten as:

p?2 = JỹD, (51)

where

ỹD = UL((WUL)HUL)−1(WUL)H x̃D, (52)

and the matrix W is defined in Lemma 3. Here x̃D is
given by (49). Note that (51) shares the same formulation
as the first equation of (48). Furthermore, according to (52),
the vector ỹD can be regarded as the denoised version
of x̃D, as characterized by the oblique projection operator
UL((WUL)HUL)−1(WUL)H . Eq. (52) can also be inter-
preted as redundancy averaging with prior knowledge about
sources. Most importantly, coarray-based DOA estimators
such as the augmented covariance matrix, positive definite
Toeplitz completion, and SS MUSIC can work on the denoised
sample autocorrelation vector ỹD, without any modification.

For other cases in Section IV-B, (51) and (52) remains
applicable, except that the DPSS VL have to be replaced with
the eigenvectors ΨL.

Covariance matrix denoising using the (generalized) corre-
lation subspace is not limited to the optimization problems
presented in this paper. The constraints imposed on the co-
variance matrices by the (generalized) correlation subspace
can be readily applied to state-of-the-art covariance matrix
denoising methods and DOA estimators such as SPICE [11]–
[13], gridless SPICE [55], and atomic norm denoising [34]–
[36], [56]. This idea could lead to new DOA estimators that
enjoy improved performance, which could even approach the
Cramér-Rao bounds for sparse arrays [44], [57], [58].

VI. GENERALIZED CORRELATION SUBSPACES IN
MULTIPLE DIMENSIONS

The results developed in [16] were not restricted to one
dimension. Even though our discussions in this paper were
so far restricted to 1D arrays and 1D DOAs, they can also
be readily generalized to multiple dimensions as we shall
elaborate next. This is useful in many practical scenarios such
as angle-Doppler estimation [38], [39], angle-delay estimation
[40], angle-range estimation [41], 2D DOA (azimuth and
elevation) estimation [6], and harmonic retrieval [42], [43].

Let us consider the data model for the R-dimensional (R-D)
case. The R-D sampling locations n = (n(1), n(2), . . . , n(R))
are collected by the set S ⊂ ZR and the harmonic parameters
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to be estimated are denoted by µ̄ = (µ̄(1), µ̄(2), . . . , µ̄(R)) ∈
[−1/2, 1/2]R. Then we have the following data model:

xS =

D∑

i=1

AivS(µ̄i) + nS, (53)

where the vectors xS, vS(µ̄i), and nS represent the measure-
ment, the steering vector, and the noise term, respectively.
The entry of the steering vector associated with the sample
locations n ∈ S is given by ej2πµ̄

T
i n. The source amplitudes

Ai and the noise term nS are assumed to be uncorrelated, as
in Section II. Then we can define the R-D difference coarray
and the matrix J as follows:

Definition 7 (R-D difference coarray): Let S be a set of
R-D sampling locations. The difference coarray is defined as
D = {n1 − n2 : ∀n1,n2 ∈ S}.

Definition 8 (The matrix J for R-D): Let S be a set of R-
D sampling locations and D be the R-D difference coarray.
The matrix J is an |S|2-by-|D| matrix satisfying 〈J〉:,m =
vec(I(m)). The matrix I(m) is given by

〈I(m)〉n1,n2
=

{
1, if n1 − n2 = m,

0, otherwise,

where m ∈ D and n1,n2 ∈ S.
Using Definitions 7 and 8, the correlation vector can be

expressed as c(µ̄) , vec(vS(µ̄)vHS (µ̄)) = JvD(µ̄), where
vD(µ̄) is the steering vector on the difference coarray. A
numerical example is demonstrated in the supplementary
document [46, Section II] for clarity. Then, the generalized
correlation subspace matrix becomes

S(ρ) ,
∫

[−1/2,1/2]R
c(µ̄)cH(µ̄)ρ(µ̄)dµ̄ (54)

= J

(∫

[−1/2,1/2]R
vD(µ̄)vHD (µ̄)ρ(µ̄)dµ̄

)

︸ ︷︷ ︸
SD(ρ)

JH . (55)

Eq. (54) and (55) are analogous to Definition 2 and Lemma
2, respectively. Finally, the generalized correlation subspace
GCS(ρ) , col(S(ρ)), as in Definition 3. According to (55),
the generalized correlation subspace for R-D depends on the
difference coarray, similar to Lemma 2.

Next we will consider some concrete examples in 2D. They
are joint angle-Doppler estimation and 2D DOA estimation.

Example 6 (Joint angle-Doppler estimation): The joint
angle-Doppler estimation [38], [39] corresponds to the data
model (53) with R = 2. It aims to estimate the angle and
Doppler frequency from the spatiotemporal measurements xS.
The harmonic parameters µ̄ = (µ̄(1), µ̄(2)) are related to the
DOA and the Doppler frequency as follows:

µ̄(1) = (d/λ) sin θ, µ̄(2) = (T/λ)v, (56)

where λ is the wavelength, d = λ/2 is the minimum sensor
separation, θ ∈ [−π/2, π/2] is the DOA, T is the sampling
interval in the temporal domain, and v is the radial velocity
of the source. µ̄(1) and µ̄(2) are called the normalized angle
and normalized Doppler, respectively. If the sampling interval
T is chosen properly, the parameters (µ̄(1), µ̄(2)) belongs to

µ̄(1)

(a)

µ̄(2)

1/2−1/2

1/2

−1/2

µ̄(1)

(b)

µ̄(2)

1/2−1/2

1/2

−1/2

µ̄(1)

(c)

µ̄(2)

1/2−1/2

1/2

−1/2

µ̄(1)

(d)

µ̄(2)

1/2−1/2

1/2

−1/2

Fig. 6. The visible region (shaded) of (a) angle-Doppler, (b) 2D DOA, (c)
2D DOA with θmin ≤ θ ≤ θmax, and (d) 2D DOA with φmin ≤ φ ≤ φmax.

[−1/2, 1/2]2. This region is also depicted in Fig. 6(a) for
clarity.

Next, suppose we choose the density function ρ(µ̄) to be
1[−1/2,1/2]2(µ̄). The generalized correlation subspace matrix
becomes

S(1[−1/2,1/2]2) = JJH = (JW−1/2)W (JW−1/2)H ,

where W = diag(w(m))m∈D. Here w(m) = |{(n1,n2) ∈
S2 : n1 − n2 = m}| denotes 2D weight function. This result
is analogous to that in Section IV-A. It can be inferred that
the positive eigenvalues of S(1[−1/2,1/2]2) are w(m) and the
associated eigenvectors are vec(I(m))/

√
w(m). Note that

the results in Example 6 can be trivially extended to the R-D
case if the parameters µ̄ ∈ [−1/2, 1/2]R.

Example 7 (2D DOA estimation): Another example of (53)
with R = 2 is the 2D DOA estimation. The parameters of
interest are the azimuth φ ∈ [0, 2π] and the elevation θ ∈
[0, π/2]. The relation between the 2D DOA (θ, φ) and the
harmonic parameters µ̄ = (µ̄(1), µ̄(2)) is given by

µ̄(1) = (dx/λ) sin θ cosφ, µ̄(2) = (dy/λ) sin θ sinφ, (57)

where dx = dy = λ/2. According to (57), the visible region
of µ̄ becomes a disc with radius 1/2, i.e.,

K = {µ̄ : ‖µ̄‖2 ≤ 1/2}. (58)

The set K is also depicted in Fig. 6(b). Using (55), the
generalized correlation subspace matrix with density function
ρ(µ̄) = 1K(µ̄) becomes S(1K) = JSD(1K)JH . Here the en-
try of SD(1K) associated with coarray location m1,m2 ∈ D
can be derived as [46, Section III]

〈SD(1K)〉m1,m2 = jinc(‖m1 −m2‖2), (59)

where the jinc function jinc(x) is π/4 for x = 0 and
J1(πx)/(2x) otherwise [59]. Here J1(x) is the first-order
Bessel function of the first kind [59]. Eq. (59) can be regarded
as an extension of (32) since the jinc function is analogous
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to the sinc function in the 2D polar coordinate [59]. The
eigenvectors of SD(1K) are 2D discrete prolate spheroidal
sequences (2D DPSS). Details about these sequences can be
found in [60] and the references therein. Finally the general-
ized correlation subspace can be approximated by col(JΨL),
where ΨL contains the first L 2D DPSS and L is defined in
(44).

If the prior knowledge about 2D DOA is available, then the
visible region could be an annulus or a circular sector. For
instance, if we know a priori that the elevation θmin ≤ θ ≤
θmax, then the visible region is depicted in Fig. 6(c). On the
other hand, if the the prior knowledge is φmin ≤ φ ≤ φmax,
then the visible region becomes a circular sector, as illustrated
in Fig. 6(d).

VII. NUMERICAL EXAMPLES

A. Generalized Correlation Subspaces

In this section, we will consider the following four 1D array
configurations: the ULA with 10 sensors, the nested array with
N1 = N2 = 5, the coprime array with M = 3, N = 5, and
the super nested array with N1 = N2 = 5, Q = 2, where the
notations are in accordance with [18], [21], [26]. The number
of sensors is 10 for each array. The sensor locations and the
nonnegative part of the difference coarrays for these arrays are
depicted in Fig. 2. Since the difference coarray is symmetric
[46, Lemma 1-2]., the size of the difference coarray is 19 for
ULA, 59 for the nested array, 43 for the coprime array, and
59 for the super nested array.

The following example aims to demonstrate Theorem 1 and
(27). The experiment is conducted as follows. We first compute
the numerical approximation of S(ρ), as denoted by S̃(ρ), as
follows:

S̃(ρ) =

(Npt−1)/2∑

`=−(Npt−1)/2

c(`∆)cH(`∆)ρ(`∆)×∆, (60)

where the number of discrete samples is Npt = 214 + 1 and
the step size is ∆ = 1/Npt. Then the eigenvalues of S̃(ρ1)

and S̃(ρ2) are plotted in Fig. 7(a), (c), (e), and (g), where
ρ1(θ̄) and ρ2(θ̄) are given in Theorem 1. As a comparison,
the weight functions for these arrays are plotted in Fig. 7(b),
(d), (f), and (h).

The results in Fig. 7 show that, col(S̃(ρ1)) and col(S̃(ρ2))
have the same dimension |D|, which is the size of the
difference coarray. For example, the nested array (Fig. 7(c))
and the super nested array (Fig. 7(g)) share the same number
of nonzero eigenvalues, since they own the same difference
coarray, as shown in Fig. 2(b) and (d). Furthermore, the
eigenvalues for S̃(ρ2) should be close to the weight functions,
as indicated in (27). This property can be verified, for instance,
in Fig. 7(g) and (h), where the eigenvalues λ2 = λ3 = 4 and
the weight functions w(2) = w(−2) = 4.

B. DOA Estimation with Nested Arrays and Prior Source
Intervals

Fig. 8 shows the estimation performance as a function
of SNR and the number of snapshots. The equal-power and

uncorrelated sources have normalized DOAs −0.045, 0, and
0.045. The number of sources D is 3. The array configuration
is the nested array with N1 = N2 = 5 (10 sensors), as de-
picted in Fig. 2(b). Then the generalized correlation subspaces
GCS(1[−α/2,α/2]) can be evaluated according to Section IV.
The error tolerance in (44) is δ = 10−10 so the parameter L
becomes 10 and 17 for α = 0.1 and 0.2, respectively. In each
run, the sensor measurements x̃S(k) for k = 1, . . . ,K are
realized by (1), from which the sample covariance matrix R̃S
can be determined by (10). Then the covariance matrices are
denoised according to 1) Problem (P1) and the cvx package
with perfect knowledge about the noise power; 2) Problem
(P2) and (47) without knowing the noise power. Finally the
source directions are estimated by the SS MUSIC algorithm
[18], [27] on the denoised covariance matrices. The estimation
performance is measured in terms of root mean-squared errors
(RMSE), defined as

RMSE =

√√√√ 1

D

D∑

i=1

(̂̄θi − θ̄i)2,

where ̂̄θi denotes the estimated normalized DOAs. Each sam-
ple point is averaged from 1000 Monte-Carlo runs.

It can be seen from Fig. 8 that if the source interval
[−α/2, α/2] is known, the RMSEs decrease except at very
low SNRs. In this example, we choose α = 1, 0.2, and 0.1
in Fig. 8. The following discuss the performances of these
estimators:

1) In most cases, the RMSE for (P1) and (P2) decrease
with α, for the same SNR and the same number of
snapshots. The improvement is significant for low SNR
and limited snapshots. This is because smaller source
intervals [−α/2, α/2] help to improve the estimation
performances.

2) (P1) requires much more time than (P2), provided that
the generalized correlation subspace is computed using
the results in Section IV. For instance, the computational
time for (P1) and α = 0.1 in Fig. 8(a) is 9904.5 seconds
while that for (P2) and α = 0.1 in Fig. 8(a) is 53.7
seconds. The reason is that (P1) is solved numerically
using the cvx package but (P2) can be implemented
efficiently using (47).

3) As shown in Fig. 8(a), empirically, (P2) has better
estimation performance than (P1) for the same α in most
cases. For instance, if α = 0.1 and SNR = −10dB, then
the RMSE for (P1) is 4.9 × 10−3 while that for (P2)
becomes 1.9×10−3. If α = 0.1 and SNR = 10dB, then
the RMSEs for (P1) and (P2) are about 8.8× 10−4 and
6.9× 10−4, respectively. These phenomena can also be
observed in Fig. 8(b).

C. Computational Complexity

Table II investigates the interplay between the computational
complexity and the estimation performance by varying the
parameter α and the implementation details. These cases
are denoted by Cases A to H, respectively. Here Step 1,
which computes the (generalized) correlation subspace, can
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Fig. 7. The eigenvalues of the matrix S̃(ρ) (left) and the weight functions (right) for (a), (b) the ULA with 10 sensors (|D| = 19), (c), (d) the nested array
with N1 = N2 = 5 (10 sensors, |D| = 59), (e), (f) the coprime array with M = 3, N = 5 (10 sensors, |D| = 43), and (g), (h) the super nested array with
N1 = N2 = 5, Q = 2 (10 sensors, |D| = 59). Here the matrices S̃(ρ) are given by (60) and the eigenvalues of S̃(ρ) are obtained numerically.

be realized in two ways. One is the numerical integration
(60), followed by numerical eigen-decompositions [16]. The
number of grids Npt in (60) is 214 + 1 while the density
function ρ(θ̄) is 2(1− (2θ̄)2)−1/21[−α/2,α/2](θ̄). The other is
to use the proposed analytical expressions, based on Definition
5, Theorem 1, and Table I. Then, in Step 2, either (P1) or
(P2) is solved. Finally, Step 3 uses SS MUSIC to estimate the
source directions. We assume 100 snapshots and 5dB SNR.
The CPU time and the RMSEs in Table II are averaged from
1000 Monte-Carlo runs, on a Ubuntu 16.04 workstation with
a Intel Core i7-2600 3.40GHz processor and 8GB RAM. The
remaining parameters are given in Section VII-B.

Some observations can be drawn from Table II. First,
the proposed analytical expressions lead to almost the same
RMSE but much less CPU time than those with numerical
approximations. For instance, the CPU time for Step 1 in
Case D is about 0.04% of that for Step 1 in Case B. Second,
in these examples, (P2) enjoys smaller RMSE and much less
computational time than (P1). As an example, the CPU time of
Step 2 in Case B costs only 0.007% of that of Step 2 in Case

A, while the RMSE is 0.000991 for Case A and 0.000918
for Case B, respectively. Finally, if α = 0.1, the proposed
analytical approach remains computationally tractable. It can
be observed that the CPU time for Step 1 in Case H is
approximately 0.2% of that for Step 1 in Case F. These
observations show that, for a given α, it is preferable to use
the proposed analytical expressions and problem (P2), since
they lead to the least total time and the smallest RMSE.

VIII. CONCLUDING REMARKS

In this paper, we presented generalized correlation sub-
spaces with applications to DOA estimation for uncorrelated
sources and known source intervals. Generalized correlation
subspaces have closed-form characterizations in terms of array
profiles such as sensor locations and difference coarrays. Fur-
thermore, our theory provides insights to existing DOA estima-
tors and multidimensional sparse arrays with prior knowledge
about sources.

In the future, it is of considerable interest to exploit
generalized correlation subspaces in other topics of array
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Fig. 8. The dependence of root mean-squared errors (RMSE) on (a) SNR
and (b) the number of snapshots for the optimization problems (P1) and (P2)
with generalized correlation subspaces GCS(1[−α/2,α/2]). There are D = 3
equal-power and uncorrelated sources at normalized DOAs −0.045, 0, and
0.045. The array configuration is the nested array with N1 = N2 = 5 (10
sensors), as depicted in Fig. 2(b). The parameters are (a) 100 snapshots and
(b) 0dB SNR. Each data point is averaged from 1000 Monte-Carlo runs.

TABLE II
CPU TIME IN SECONDS AND RMSE FOR SEVERAL CASES

Case α
Step 1
(time)

Step 2
(time)

Total time
(including

Step 3)
RMSE

A 1
Numerical
(3.288s)

P1
(1.057s) 4.351s 0.000991

B 1
Numerical
(3.248s)

P2
(0.00008s) 3.255s 0.000918

C 1
Analytical
(0.0013s)

P1
(0.802s) 0.810s 0.000990

D 1
Analytical
(0.0013s)

P2
(0.00009s) 0.008s 0.000918

E 0.1
Numerical
(3.296s)

P1
(1.118s) 4.421s 0.000903

F 0.1
Numerical
(3.271s)

P2
(0.00008s) 3.278s 0.000718

G 0.1
Analytical
(0.0066s)

P1
(1.053s) 1.067s 0.000901

H 0.1
Analytical
(0.0066s)

P2
(0.00010s) 0.013s 0.000718

† “Analytical” is the new analytical method for Step 1, as in Section IV.
‡ P2 is the proposed method for Step 2, as in Section V.
* Step 3 took between 0.0063 to 0.0068 seconds.

processing, like adaptive beamforming, source detection, and
target tracking. Another future topic would be the performance
analysis for the proposed approach using generalized correla-
tion subspaces.

APPENDIX A
PROOF OF THE EQUIVALENCE OF (6) AND DEFINITION 1
To begin with, we need the following lemmas:
Lemma 4: Let M ∈ CN×N be a Hermitian, positive

semidefinite matrix. Assume u ∈ CN . Then uHMu = 0
if and only if u belongs to the null space of M.

Proof: If u belongs to the null space of M, then Mu = 0
and clearly uHMu = 0. Conversely, if uHMu = 0, then
(M1/2u)H(M1/2u) = 0, where the matrix square root exists
due to the positive semidefiniteness of M. Hence, M1/2u = 0,
so Mu = 0.

Lemma 5: Let f(x) be a real-valued Lebesgue integrable
function defined over a measurable set A. Assume that f(x) ≥
0 for x ∈ A almost everywhere (a.e.). Then

∫
A f(x)dx = 0 if

and only if f(x) = 0 a.e.
Proof: See [61, Chapter V] for details.

Next it will be first shown that CS⊥ = null(SH), where
CS⊥ denotes the orthogonal complement of CS and null(A)
represents the null space of A.

First consider any v ∈ null(SH). Since S is a Her-
mitian positive semidefinite matrix, Lemma 4 implies that
v ∈ null(SH) is equivalent to vHSHv = 0. Substituting the
definition of S, (8), into vHSHv = 0 yields

∫ π/2

−π/2

∣∣vHc(θ̄)
∣∣2 dθ = 0. (61)

Since the nonnegative function
∣∣vHc(θ̄)

∣∣2 is continuous in θ,
Lemma 5 indicates that (61) is equivalent to

∣∣vHc(θ̄)
∣∣2 = 0

for all θ ∈ [−π/2, π/2]. Namely, v ∈ CS⊥. Note that all the
above arguments are both necessary and sufficient so we have
CS⊥ = null(SH).

Finally, the correlation subspace can be obtained by CS =
CS⊥⊥ = null(SH)⊥ = col(S), which proves this observation.

APPENDIX B
PROOF OF LEMMA 1

Let ρ1(θ̄) and ρ2(θ̄) be two nonnegative Lebesgue integrable
functions with the same support. The support of ρ1(θ̄) and
ρ2(θ̄) satisfies supp(ρ1) = supp(ρ2) = A ⊆ [−1/2, 1/2]. The
corresponding generalized correlation subspace matrices are
denoted by S(ρ1) and S(ρ2), respectively.

Consider a nonzero and finite-valued vector u ∈ C|S|2 . It
will be shown that uHS(ρ1)u = 0 if and only if uHS(ρ2)u =
0. Based on Definition 2, the condition uHS(ρ1)u = 0 is
equivalent to the following:

uH
(∫

A
c(θ̄)cH(θ̄)ρ1(θ̄)dθ̄

)
u = 0

if and only if
∫

A
|cH(θ̄)u|2ρ1(θ̄)dθ̄ = 0. (62)

Due to Lemma 5, Eq. (62) is equivalent to the statement
that |cH(θ̄)u|2ρ1(θ̄) = 0 for θ̄ ∈ A a.e. Since θ̄ belongs
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to the support A, multiplying both sides with ρ2(θ̄)/ρ1(θ̄)
yields |cH(θ̄)u|2ρ2(θ̄) = 0 for θ̄ ∈ A a.e. Invoking Lemma 5
again gives uHS(ρ2)u = 0. Combining the above arguments
with Lemma 4 leads to null(S(ρ1)) = null(S(ρ2)), where
null(S) denotes the null space of S. Taking the orthogonal
complement on the null spaces gives col(S(ρ1)) = col(S(ρ2)),
which proves this theorem.
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