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ABSTRACT
A new transform, called the generalized fractional Fourier transform

(gFrFT), is proposed. Originally, the eigenfunctions of the fractional

Fourier transform (FrFT) are known as the Hermite Gaussian functions

(HGFs). Besides, in optics, the HGFs are generalized to be the gener-

alized Hermite Gaussian functions (gHGFs) and their adjoint functions

(AgHGFs). Therefore, we can define the gFrFT by the eigenvalues of the

FrFT and the eigenfunctions (gHGFs/AgHGFs) in the analysis or synthe-

sis step. Four types of the gFrFT are defined and discussed. The integral

forms of the gFrFTs are derived and they are closely related to some popu-

lar transforms, such as the Fourier transform (FT), the FrFT, and the com-

plex linear canonical transform (CLCT). We can also extend the FT and

the FrFT to the standard and elegant versions. Finally, some properties of

the gFrFT are discussed.

STANDARD/ELEGANT/GENERALIZED HGFS
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DEFINITIONS

• By [2], the three-step definition for the gFrFT Type-I, denoted by F(I)
α,r,c

1. Analysis: ar,cn =

∫
R
f(x) (Φr,cn (x))

∗
dx.

2. Eigenvalue multiplication: br,cn = e−jnαar,cn .

3. Synthesis: F (I)
α,r,c(u) = F(I)

α,r,c {f} (u) =
∞∑
n=0

br,cn Ψr,c
n (u).

• Four types of the gFrFT:

gFrFT Type I II III IV

Analysis kernels Φr,cn (x) Ψr,c
n (x) Ψr,c

n (x) Φr,cn (x)

Eigenvalues e−jnα e−jnα e−jnα e−jnα

Synthesis kernels Ψr,c
n (x) Φr,cn (x) Ψr,c

n (x) Φr,cn (x)

THE INTEGRAL FORM
• By definition and using the Mehler’s formula, we have the integral

form for the gFrFT Type-I: F (I)
α,r,c(u) =

N1e
c(−1+r(1+j cotα))u2

∫
R
f(x)ec(1−r(1−j cotα))x

2

e−j2rcxu cscαdx,

where N1 =
√
rc(1− j cotα)/π. Other types can be derived in the

same way.

• If we substitute r and c with their conjugates and exchange the x/u-

domain complex Gaussian functions, the type-I kernel becomes the

type-II kernel.

THE CONNECTION TO OTHER TRANSFORMS
• Fourier transform in angular frequency: α = π/2, r = 1, c = 1/2.

• Fourier transform in frequency: α = π/2, r = 1, c = π.

• We extend these transforms into standard/generalized/elegant cases:

r = 1 r r = 1/2

c ∈ R+, α = π/2 sFT gFT eFT

c ∈ R+, α sFrFT gFrFT eFrFT

• The gFrFT Type-I is related to the complex linear canonical transform

(CLCT) with

M(I)
α,r,c =

cosα+ j r−1r sinα 1
2rc sinα

2c( 1
r − 2) sinα cosα− j r−1r sinα

 .
• We can decompose M(I)

α,r,c into the combination of scaling, chirp mul-

tiplication, and the FrFT:σ−11 0

0 σ1
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−k1 1

 cosα sinα

− sinα cosα

 1 0

k1 1

σ1 0

0 σ−11

 ,
where σ1 =

√
2rc, k1 = j(r − 1)/r.

• The decomposition of the gFrFT operators (σ2 = σ∗1 and k2 = k∗1)

F(I)
α,r,c = S−1σ1

C−1k1 FαCk1Sσ1
, F(II)

α,r,c = S−1σ2
C−1k2 FαCk2Sσ2

,

F(III)
α,r,c = S−1σ1

C−1k1 FαCk2Sσ2 , F(IV)
α,r,c = S−1σ2

C−1k2 FαCk1Sσ1 .

• With M(I)
α,r,c and the decomposition of gFrFT operators, it is trivial to

obtain the mathematical properties.

• It is very likely to decompose the CLCT into the gFrFT.
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