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ABSTRACT

A new transform, called the generalized fractional Fourier
transform (gFrFT), is proposed. Originally, the eigenfunc-
tions of the fractional Fourier transform (FrFT) are known
as the Hermite Gaussian functions (HGFs). Besides, in op-
tics, the HGFs are generalized to be the generalized Her-
mite Gaussian functions (gHGFs) and their adjoint functions
(AgHGFs). Therefore, we can define the gFrFT by the eigen-
values of the FrFT and the eigenfunctions (gHGFs/AgHGFs)
in the analysis or synthesis step. Four types of the gFrFT are
defined and discussed. The integral forms of the gFrFTs are
derived and they are closely related to some popular trans-
forms, such as the Fourier transform (FT), the FrFT, and the
complex linear canonical transform (CLCT). We can also ex-
tend the FT and the FrFT to the standard and elegant versions.
Finally, some properties of the gFrFT are discussed.

Index Terms— Fractional Fourier transforms, General-
ized Hermite Gaussian functions

1. INTRODUCTION

The Fourier transform (FT) is a popular signal processing tool
[1]. For a given signal, the FT enables us to analyze the fre-
quency contents and has lots of applications. If the signal
components are not fully separable in the frequency domain,
the fractional Fourier transform (FrFT) [2], [3], which is de-
fined as the fractional order of the FT, might be useful. The
signal is transformed to the domain between time and fre-
quency, where different components might be separable. The
linear canonical transform (LCT) generalizes the FrFT fur-
ther. The matrix M is introduced to generalize the integral
kernel. Those transforms correspond to certain operations in
the time-frequency plane. The FT or the FrFT rotates the en-
tire plane while the LCT twists the plane. Filtering is viewed
as applying a mask in that plane.

One popular definition of the FrFT is based on the Her-
mite Gaussian functions (HGFs) as the eigenfunctions. In
optics, the HGFs are the solutions to the paraxial Helmholtz
equation, which the eigenmodes of light propagation satisfy.
In addition to the HGFs, there are still other modes, such as

the elegant Hermite Gaussian functions [4] and the general-
ized Hermite Gassian functions [5]. These functions can be
used to be eigenfunctions and then we are able to define new
transforms.

This paper is organized as follows. Some preliminaries
about the FrFT and the LCT, such as the definitions, prop-
erties, and the eigenfunctions, are mentioned in Section 2.
Different Hermite Gaussian functions are briefly reviewed in
Section 3. The definition, integral form, connection to other
transforms, and some interesting properties, are investigated
in Section 4. Section 5 concludes this paper.

2. PRELIMINARY

The conventional LCT is specified by a 2-by-2 real matrix
M = [A,B;C,D] ∈ R2×2 and defined as

FM(u) = LM {f(x)} (u) = KB

∫
R
f(x)KM(x, u)dx, (1)
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is the integration kernel with det(M) = 1. The LCT satisfies
the additivity and the reversibility by

LM2M1
= LM2

LM1
, L−1M = LM−1 . (3)

Some basic operations are the special cases of the LCT.
For example, the scaling operation Sσ and the chirp multipli-
cation operation Ck are specified by the matrices [σ, 0; 0, σ−1]
and [1, 0; k, 1], respectively. The well-known FrFT, denoted
by the operator Fα, is also a special case of the LCT when

Mα =

[
cosα sinα
− sinα cosα

]
. (4)

The properties of the LCT in (3) are simplified into

Fα+β = FαFβ , F−1α = F−α, (5)



and for some special α, we have

F0 = F2π = I, Fπ = P, Fπ/2 = F , (6)

where I is the identity operator, P is the time-reversal oper-
ator (Pf(x) = f(−x)) and F is the conventional FT opera-
tor. The eigenfunctions of the FrFT are known as the Hermite
Gaussian functions (HGFs) hn(x), which are the solution of
the differential equation(

D2
x − x2

)
hn(x) = −(2n+ 1)hn(x), (7)

where Dx = d/dx is the differential operator with respect to
x. The close form HGFs are

hn(x) =
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where Hn(x) = (−1)nex
2Dnxe−x

2

are the Hermite polyno-
mials. The HGFs are self-orthogonal and complete in L2(R).
In [2], The eigenvalues of the FrFT are known to be e−jnα so
that

Fα {hn(x)} (u) = e−jnαhn(u). (9)

Therefore, we can implement the FrFT by orthogonal expan-
sion in terms of hn(x).

3. STANDARD/ELEGANT/GENERALIZED
HERMITE GAUSSIAN FUNCTIONS

In optics, the HGFs are the solutions of the paraxial equation
in Cartesian coordinates [6]. The complete solution is not
discussed here due to lots of beam parameters w(z), q(z) and
the phase term P (z). We focus ourselves on the solutions at
the origin, i.e. z = 0, neglect the phase term, and deal with
one-dimensional solutions. The simplest solution set is the
standard Hermite Gaussian functions (sHGFs), which are

ΨsHG
n (x) =

( √
2

w02nn!
√
π

) 1
2

Hn

(√
2x

w0

)
e
− x2

w2
0 , (10)

where w0 is the half-width at the beam waist. It is clear that
(10) is a scaling version of (8) with scaling factor

√
2/w0.

Because of the scaling relation, the sHG functions are self-
orthogonal,

〈
ΨsHG
m (x),ΨsHG

n (x)
〉

= δm,n.
In [4], Siegman introduced a symmetrical form, called the

elegant Hermite Gaussian functions (eHGFs), still satisfying
the paraxial equation. The eHGFs, associated with a complex
parameter c, are

ΨeHG
n (x) =

( √
c
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. (11)

If we compare (10) with (11), it is observed that the eHGFs
seems to be the scaling version of HGFs, however, with differ-
ent Gaussian weighting functions. As a result, the eHGs are

not self-orthogonal but biorthogonal to their adjoint functions,
called adjoint elegant Hermite Gaussian functions (AeHGFs),
which are

ΦeHG
n (x) =

( √
c∗
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) 1
2

Hn(
√
c∗x) (12)

so that
〈
ΨeHG
m (x),ΦeHG

n (x)
〉

= δm,n. Note that the AeHGFs
contain no Gaussian weighting functions, which makes them
unbounded.

In [5], Pratesi and Ronchi further defined the generalized
Hermite Gaussian functions (gHGFs), which are generaliza-
tions between the sHGFs and the eHGFs in complicated beam
parameters. We simplify the gHGFs to be [7]

Ψr,c
n (x) =
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The gHGFs are still not self-orthogonal. The adjoint solutions
(AgHGFs) are found to be

Φr,cn (x) = Nr,cHn(
√

2r∗c∗x)e(c
∗−2r∗c∗)x2

, (14)

with Nr,c =
(√

2r∗c∗/(2nn!
√
π)
)1/2

. If r = 1, c = 1/w2
0 ∈

R+, the gHGFs and the AgHGFs become the sHGFs. When
r = 1/2, the gHGFs are the eHGFs and the AgHGFs are
identical to the AeHGFs. Therefore, the parameter c can be
regarded as the scale of the HGFs while the parameter r con-
trols the the intermediates between the sHGFs and the eHGFs.

4. THE GENERALIZED FRACTIONAL FOURIER
TRANSFORM

4.1. The definition

In [2], the FrFT is first defined by the eigenvalues e−jnα and
the eigenfunctions of the FT. By the above definition, imple-
menting the FrFT involves three steps: analysis, eigenvalue
multiplication, and synthesis. The generalized FrFT can be
defined in the similar way. The gHGFs/AgHGFs are used for
eigenfunctions while the eigenvalues are unchanged.

There are two choices (gHG/AgHG) of the analysis kernel
and the synthesis kernel. We can make linear combinations of
the kernels and have four types of the gFrFT. The definitions
of the four types of the gFrFT are listed in Table 1.

For example, the gFrFT Type-I, denoted by the operator
F(I)
α,r,c, is decomposed into three steps:

1. Analysis: Decompose the input signal f(x), x ∈ R into
the coefficients ar,cn by taking the inner product of f(x)
and the analysis kernel Φr,cn (x).

ar,cn =

∫
R
f(x) (Φr,cn (x))

∗
dx. (15)



gFrFT Type I II III IV

Anal. kernels Φr,cn (x) Ψr,c
n (x) Ψr,c

n (x) Φr,cn (x)
Eigenvalues e−jnα e−jnα e−jnα e−jnα

Syn. kernels Ψr,c
n (x) Φr,cn (x) Ψr,c

n (x) Φr,cn (x)

Table 1. The definitions of the four types of the generalized
FrFT with different analysis kernels and synthesis kernels.

2. Eigenvalue multiplication: Multiply the coefficients
with the eigenvalues, e−jnα, which are set to be the
same as the eigenvalues of the conventional FrFT.

br,cn = e−jnαar,cn . (16)

3. Synthesis: Use the modified coefficients to synthesis
F (I)
α,r,c(u) with respect to the synthesis kernel Ψr,c

n (u),
where u ∈ R. That is,

F (I)
α,r,c(u) = F(I)

α,r,c {f} (u) =

∞∑
n=0

br,cn Ψr,c
n (u). (17)

Other types of the gFrFT are the same as the steps above with
some change of the analysis kernels in (15) and the synthesis
kernels in (17).

4.2. The integral form

From the definition of the gFrFT, an integral form of the
gFrFT can be derived. Substituting (15) and (16) into (17)
and using the Mehler’s formula,

∞∑
n=0

tn

2nn!
Hn(x)Hn(y) =

1√
1− t2

e
2xyt−(x2+y2)t2

1−t2 , (18)

yield the integral form of the gFrFT Type-I:

F (I)
α,r,c(u) =

√
rc(1− j cotα)

π
ec(−1+r(1+j cotα))u

2

×∫
R
f(x)ec(1−r(1−j cotα))x

2

e−j2rcxu cscαdx. (19)

If we follow the definition in Table 1, we can derive the the
integral form of the other three types of the gFrFT. They are

F (II)
α,r,c(u) =

√
r∗c∗(1− j cotα)

π
ec

∗(1−r∗(1−j cotα))u2

×∫
R
f(x)ec

∗(−1+r∗(1+j cotα))x2

e−j2r
∗c∗xu cscαdx, (20)

F (III)
α,r,c(u) =

√
|rc| (1− j cotα)

π
ec(−1+r(1+j cotα))u

2

×∫
R
f(x)ec

∗(−1+r∗(1+j cotα))x2

e−j2|rc|xu cscαdx, (21)

F (IV)
α,r,c(u) =

√
|rc|(1− j cotα)

π
ec

∗(1−r∗(1−j cotα))u2

×∫
R
f(x)ec(1−r(1−j cotα))x

2

e−j2|rc|xu cscαdx. (22)

It is observed that all of the kernels are composed of three
terms: the x-domain complex Gaussian function, the Fourier
kernel involving xu term, and the u-domain complex Gaus-
sian function. Different scaling factors of the three terms yield
different kernels. Besides, there are some symmetries be-
tween the four kernels. First, if we substitute r and cwith their
conjugates and exchange the x/u-domain complex Gaussian
functions, the type-I kernel becomes the type-II kernel. Then,
the type-III kernel combines the x-domain complex Gaussian
function of the type-II kernel, the u-domain complex Gaus-
sian function of the type-I kernel, and the scaling factor in the
Fourier kernel becomes |rc| together. The type-IV kernel is
similar to the type-III kernel with different complex Gaussian
functions.

As the FrFT in [2], there is also some ambiguity for the
gFrFT when α = nπ. In [8], an extra phase term, specifying
the branch of the square-root function, was added to remove
the ambiguity. The same method can be applied here.

4.3. Connection to other transforms

4.3.1. The Fourier transforms and their extensions

The conventional Fourier transform can be obtained from the
gFrFT. Setting r = 1 and α = π/2 in the type-I kernel yields√
c/πe−j2cxu, which is similar to the kernel of the FT. In ad-

dition, if we let c = 1/2, e−jxu/
√

2π is the FT kernel asso-
ciated with the angular frequency, measured in rad/s. When
c = π, e−j2πxu is associated with the ordinary frequency,
measured in Hertz. Both transforms are unitary. In other
words, we can define the new FT with a scaling parameter
c ∈ R+ and the obtained transform is unitary. The integral
form is

F (sFT)
c (u) =

√
c

π

∫
R
f(x)e−j2cxudx. (23)

We call it the “standard Fourier transforms” (sFTs) because in
this case, the eigenfunctions are the sHGFs. The sFTs follow
the same existence criteria of the FTs [1] because there is only
one scaling factor c between the FT and the sFT.

Following the above idea, we can define the “elegant
Fourier transforms” (eFTs) whose eigenfunctions are the
eHGFs. Setting r = 1/2, c ∈ R+ and α = π/2 yields the
following integral form,

F (eFT)
c (u) =

√
c

2π
e−cu

2/2

∫
R
f(x)ecx

2/2e−jcxudx. (24)

The eFTs might not be stable because of ecx
2/2 in its defi-

nition. f(x) is elegant-Fourier-transformable if and only if
f(x)ecx

2/2 is Fourier-transformable.



Finally, we can define the “generalized Fourier trans-
forms” (gFTs) by setting α = π/2. Its eigenfunctions are the
gHGFs.

4.3.2. The fractional Fourier transforms and their extensions

In Section 4.3.1, for some combination of α, r, and c, we
can obtain the Fourier transforms and the standard or elegant
version. Moreover, if α is not limited to π/2 but extended
to R, we have exactly the FrFT. Similarly, the two cases c =
1 and c = π lead to two different definitions of FrFT. One
is associated with the angular frequency while the other is
connected with the ordinary frequency. Therefore, we further
define the standard FrFT (sFrFT, r = 1), the elegant FrFT
(eFrFT, r = 1/2) and the generalized FrFT (gFrFT).

In the above discussion, we focus ourselves on the gFrFT
type-I. Different types of the sFrFT/eFrFT/gFrFT are defined
by (20) - (22) using the same parameter set as that in the type-I
case.

4.3.3. The complex linear canonical transforms

If we compare (19) with (1) and (2), it is obvious that (19) is
a special case of LCT of

M(I)
α,r,c =

[
cosα+ j r−1r sinα 1

2rc sinα
2c( 1

r − 2) sinα cosα− j r−1r sinα

]
.

(25)
The matrix M(I)

α,r,c is complex in general. The LCT is called
the complex LCT (CLCT), which is more general and has lots
applications in optics and quantum mechanics. According to
the symmetry, M(I)

α,r,c can be decomposed of five steps by

M(I)
α,r,c =

[
σ−11 0

0 σ1

] [
1 0
−k1 1

] [
cosα sinα
− sinα cosα

]
×
[

1 0
k1 1

] [
σ1 0
0 σ−11

]
, (26)

where σ1 =
√

2rc, k1 = j(r − 1)/r. In Section 2, Sσ1
is the

scaling operation associated with σ1 and Ck1 is the complex-
chirp multiplication associated with k1. Therefore, the gFrFT
Type-I operator can be rewritten as

F(I)
α,r,c = S−1σ1

C−1k1 FαCk1Sσ1 . (27)

The other types share the same symmetry. By defining σ2 =
σ∗1 and k2 = k∗1 , we obtain

F(II)
α,r,c = S−1σ2

C−1k2 FαCk2Sσ2 , (28)

F(III)
α,r,c = S−1σ1

C−1k1 FαCk2Sσ2, (29)

F(IV)
α,r,c = S−1σ2

C−1k2 FαCk1Sσ1
. (30)

In accordance with the symmetry between the kernels, men-
tioned in Section 4.2, there are also some symmetries in the
above operator decompositions, (27) - (30).

Because the gFrFT is a special case of the CLCT, the
properties of the CLCT are applied with given the matrix
M(I)

α,r,c. Main properties of the CLCT can be found in [9],
such as the linear property, time reversal, time shift, modu-
lation, multiplication and differentiation property, etc. From
(27) to (30), one can easily verify the additivity and the re-
versibility among the gFrFTs.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduced the gFrFT, which generalized
the conventional FT by replacing the eigenfunctions with the
gHGFs. The integral form was derived and it is closely con-
nected with some well-known transforms. In addition, the
standard and elegant form of these transforms were defined.
Finally, we related the gFrFT with the CLCT closely.

Due to the relation between the gFrFT and the CLCT, it is
possible to implement the CLCT by selecting appropriate α,
r, and c in the gFrFT. In addition, the discrete implementation
of the gFrFT is simple under its definition. As a result, the
discrete CLCT is promising with the aid of the gFrFT.
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