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Abstract—Tensor-based MUSIC algorithms have been success-
fully applied to parameter estimation in array processing. In
this paper, we apply these for sparse arrays, such as nested
arrays and coprime arrays, which are known to boost the
degrees of freedom to O(N2) given O(N) sensors. We consider
two tensor decomposition methods: CANDECOMP/PARAFAC
(CP) and high-order singular value decomposition (HOSVD)
to derive novel tensor MUSIC spectra for sparse arrays. It
will be demonstrated that the tensor MUSIC spectrum via
HOSVD suffers from cross-term issues while the tensor MUSIC
spectrum via CP identifies sources unambiguously, even in high-
dimensional tensors.1

Index Terms—Sparse arrays, MUSIC algorithm, CANDE-
COMP/PARAFAC (CP), high-order singular value decomposition
(HOSVD).

I. INTRODUCTION

A tensor is a high-dimensional array [1], [2]. It enables
us to embed the underlying signal characteristics in different
dimensions, rather than stacking the measurement into a huge
vector. Tensors find application in sensor array processing [3],
parameter estimation [4], harmonic retrieval in MIMO radar
[5], and vector-sensor array processing [6].

The spirit in tensor-based signal processing is built on the
tensor decomposition [1], [2]. Known methods can be divided
into two categories: CANDECOMP/PARAFAC (CP) [7], [8]
and high-order singular value decomposition (HOSVD) [9].
CP decomposes a given tensor into a sum of rank-one ten-
sors. HOSVD finds a set of unitary matrices across different
dimensions that simplifies the original tensor. Both methods
reveal the signal characteristics in the rank-one tensors of CP
or in the unitary matrices of HOSVD. Therefore, a variety
of tensor-based parameter estimation approaches, such as
tensor-ESPRIT and unitary tensor-ESPRIT [4], as well as
tensor MUSIC [6], [10] have been shown to outperform the
associated matrix-based approach.

Sparse arrays such as minimum redundancy arrays [11],
nested arrays [12], and coprime arrays [13], provide an en-
hanced degree of freedom of O(N2) given O(N) sensors.
These find application in DOA estimation [14], sampling [12],
[13], space-time adaptive processing [15], and vector-sensor
array processing [6].

In this paper, sparse arrays are incorporated with high-
dimensional tensor models and the associated tensor MUSIC
spectra are proposed. We will later show that HOSVD gives
rise to undesirable cross-terms in the tensor MUSIC spectrum.
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On the other hand, if we utilize CP to derive a tensor MUSIC
spectrum, cross-terms can be resolved.

The rest of this paper is organized as follows. In Section
II, we list the notaions in this paper and then review the main
idea of sparse array processing as well as the HOSVD tensor
MUSIC spectrum. In Section III-A, we show that sparse arrays
described by tensor models can be processed without spatial
smoothing, similar to [16]. Then in Section II-C, two tensor
MUSIC spectra, based on HOSVD and CP, will be proposed
and studied. Some numerical examples will be demonstrated
in Section IV while Section V concludes this paper.

II. PRELIMINARIES

A. Notations

Scalars are denoted as italic lowercase letters, column vec-
tors are in bold-face lowercase letters, and bold-face uppercase
letters denote matrices. Tensors are written as bold-face calli-
graphic letters, like A. Sets are denoted by blackboard bold-
face. A∗, AT , and AH represent the conjugate, the transpose,
and the conjugate transpose of a matrix A, respectively. For a
real set A, A+ is a set containing the non-negative part of A.
In the following definitions, the tensors A,C ∈ CI1×···×IN
and B ∈ CJ1×···×JM . [A]i1,...,iN extracts the entry of A
indexed by (i1, . . . , iN ). All tensor notations are summarized
in Appendix.

Given a support set S, the signal defined on it is denoted
as a column vector xS. We use [xS]i to denote the ith

component of this vector. For n ∈ S we use the triangular
bracket notation 〈xS〉n to denote the value of the signal at
the support location n. For example, if S = {1, 3, 7} and
xS = [0.1, 0.2, 0.3]

T , then [xS]1 = 0.1, [xS]2 = 0.2, [xS]3 =
0.3, whereas 〈xS〉1 = 0.1, 〈xS〉3 = 0.2, 〈xS〉7 = 0.3. These
notations extend to matrices: [RS]i1,i2 = E

[
[xS]i1 [xS]

∗
i2

]
and

〈RS〉n1,n2
= E

[
〈xS〉n1

〈xS〉∗n2

]
. The same definition works

for the tensor case.

B. Sparse Array Processing

Consider a linear sensor array whose sensors are located at
nd, where d = λ/2 and n belongs to an integer set S. A sensor
array is said to be sparse if some of the adjacent elements have
spacing greater than λ/2. It is known that sparse arrays such
as nested arrays [12], coprime arrays [13], [17], and minimum
redundancy arrays [11] achieve higher degrees of freedom than
the conventional ULA with the same number of sensors.

Assume that D monochromatic waves impinge on the
sensor array characterized by S. The received signals on S



can be modeled as a column vector xS:

xS =

D∑
i=1

AivS
(
θ̄i
)

+ nS. (1)

Here Ai and θ̄i are the complex amplitude, and the normalized
DOA of the ith source where i = 1, . . . , D. θ̄i ∈ [−π/2, π/2).
The steering vectors vS

(
θ̄i
)

are column vectors with entries
ej2πθ̄in for n ∈ S. nS is an additive noise vector. Note that
{Ai}Di=1 and nS are treated as zero-mean random vectors with
E
[
AiA

∗
j

]
= σ2

i δi,j , E
[
nSn

H
S
]

= σ2I. The sources and the
noise are assumed to be uncorrelated. Then, the covariance
matrix of xS becomes

RS = E
[
xSx

H
S
]

=

D∑
i=1

σ2
i vS

(
θ̄i
)
vHS
(
θ̄i
)

+ σ2I. (2)

We define the difference coarray D to be a set that collects
every possible difference within S, or equivalently D =
{n1 − n2|n1, n2 ∈ S}. Following the details in [12], [14],
[16], we rearrange the entries of RS into

xD =

D∑
i=1

σ2
i vD

(
θ̄i
)

+ σ2e0, (3)

where 〈e0〉m = δm,0. In the context of sparse arrays, S is
designed properly so that its difference coarray D possesses
a long ULA section in the middle [11]–[13], [17]. This ULA
portion is called U in the following development. The spatial
smoothing [12], [14] is applied to xU to construct a full-rank
matrix Rss, on which the MUSIC algorithm works.

Apart from implementing spatial smoothing, in [16], the
authors proposed another matrix R̃ replacing the role of the
spatially smoothed matrix R̃ss. It was shown in [16] that R̃
follows the same formulation as the augmented covariance
matrix method [18]. This method not only conceptually sim-
plifies the analysis but also reduces the overall computational
complexity, compared to the spatially smoothed matrix. Thus
in this paper, we will adopt the formulation in [16] and
generalize it into the tensor case.

C. Tensor MUSIC Spectrum Based on High-Order SVD

Apart from the one-dimensional DOA estimation using
linear arrays, more sophisticated designs exist to extract
more information. For instance, planar arrays detect ele-
vation/azimuth information jointly, vector-sensor arrays re-
solve DOA/polarization, and space-time processing estimates
DOA/Doppler profiles. It is natural to model these character-
istics as a data tensor, which is analogous to xS in (1).

Throughout the paper, an R-dimensional normalized har-
monic parameter µ̄ = [µ̄(1), µ̄(2), . . . , µ̄(R)]T ∈ [−1/2, 1/2)R

will be considered. In practice, µ̄(r) can be viewed as nor-
malized DOA, normalized Doppler, or polarization, depending
on the problem of interest. Next, a collection of integer
sets S1,S2, . . . ,SR identifies the array configuration (if its
physical model corresponds to sensors) or the sampling pattern
(if it corresponds to time domain sampling) over different
dimensions. We write the associated difference sets to be

D1,D2, . . . ,DR, respectively. Then, the tensor version of (1)
becomes

X S =

D∑
i=1

AiVS (µ̄) + N S. (4)

Here X S is a data tensor over S1,S2, . . . ,SR and N S is
an additive noise tensor. VS (µ̄) is the R-dimensional array
steering tensor defined by

VS (µ̄) = vS1

(
µ̄

(1)
i

)
◦ vS2

(
µ̄

(2)
i

)
◦ · · · ◦ vSR

(
µ̄

(R)
i

)
,

where the steering vectors vSr

(
µ̄

(r)
i

)
follows the same defini-

tion as that in (1). By assuming the same statistical properties
as (1), the covariance tensor (or interspectral tensor) becomes

RS = E [X S ◦X ∗S] =

D∑
i=1

σ2
iVS (µ̄) ◦ V∗S (µ̄) + σ2I, (5)

where [I]i1,i2,...,iR,i′1,i′2,...,i′R
=
∏R
r=1 δir,i′r .

Recently, in [10], a tensor MUSIC algorithm was proposed
based on the HOSVD of the covariance tensor2:

RS = K×1 U1 ×2 U2 ×3 · · · ×R UR

×R+1 U
∗
1 ×R+1 U

∗
2 ×R+1 · · · ×2R U∗R.

Here RS,K ∈ C|S1|×···×|SR|×|S1|×···×|SR| and Ur is a unitary
matrix of size |Sr| × |Sr| for r = 1, 2, . . . , R. To compute
the MUSIC spectrum, the signal/noise subspaces are separated
based on the number of sources D. Writing the bases of
signal/noise subspaces on the rth dimension as matrices Ur,s

and Ur,n, respectively, the tensor MUSIC spectrum is defined
as

PULA,HOSVD (µ̄)

=
∥∥VS (µ̄)×1 U1,nU

H
1,n ×2 · · · ×R UR,nU

H
R,n

∥∥−2

F
. (6)

Once the tensor MUSIC spectrum PULA,HOSVD (µ̄) is
obtained, the source parameters can be estimated by locating
prominent peaks in the tensor MUSIC spectrum.

III. PROPOSED TENSOR MUSIC SPECTRUM

In this section, we will first formulate R̃, which is a tensor
version of R̃ in [16] and then propose an alternative to the
MUSIC spectrum of [6], [10]. We will theoretically prove
that there are some cases where the tensor MUSIC spectrum
according to HOSVD [10] cannot resolve sources but our
proposed method can distinguish such source distributions.

A. Formulation of R̃
In the tensor model, given K snapshots X̃ S(k) for k =

1, 2, . . . ,K, the covariance tensor of X S can be estimated as

R̃S =
1

K

K∑
k=1

X̃ S(k) ◦ X̃
∗
S(k),

2This is a generalization of the tensor MUSIC algorithm in [10], where the
special case of DOA/polarization was considered.



which serves as a finite-snapshot version of (5). We now define
the finite-snapshot, tensor version of (3), denoted as X̃D. First
we define a set M(m1,m2, . . . ,mR) as

M(m1,m2, . . . ,mR)

= {(n1, n2, . . . , nR, n
′
1, n
′
2, . . . , n

′
R)

| nr, n′r ∈ Sr, nr − n′r = mr, r = 1, 2, . . . , R},

with mr ∈ Dr for r = 1, 2, . . . , R. Then the tensor defined
over the difference coarray X̃D satisfies

〈X̃D〉m1,m2,...,mR
=
∑ 〈R̃S〉n1,n2,...,nR,n′1,n

′
2,...,n

′
R

|M(m1,m2, . . . ,mR)|
,

with (n1, n2, . . . , nR, n
′
1, n
′
2, . . . , n

′
R) ∈M(m1,m2, . . . ,mR)

in the summation.
Finally, R̃ can be formulated as a tensor by writing

〈R̃〉p1,p2,...,pR,p′1,p′2,...,p′R = 〈X̃D〉m1,m2,...,mR
, (7)

where pr, p′r ∈ U+
r and pr−p′r = mr ∈ Ur for r = 1, 2, . . . , R

and U+
r is the non-negative part of the ULA section of Dr.

As a example, consider R = 2, S1 = {1, 2, 3, 6} (nested
array with N1 = N2 = 2) and S2 = {0, 2, 4, 3, 6, 9} (coprime
array with M = 2, N = 3), we obtain the difference sets
D1 = {−5,−4, . . . , 4, 5} and D2 = {−9,−7,−6, . . . , 6, 7, 9}.
The non-negative parts of the ULA section of D1 and D2 are
U+

1 = {0, 1, . . . , 5} and U+
2 = {0, 1, . . . , 7}, respectively. The

cardinalities of these sets are |S1| = 4, |S2| = 6, |D1| = 11,
|D2| = 17,

∣∣U+
1

∣∣ = 6, and
∣∣U+

2

∣∣ = 8. In such configuration,
R̃S ∈ C4×6×4×6, X̃D ∈ C11×17, and R̃ ∈ C6×8×6×8.

Here are some remarks on R̃:
1) R̃ avoids implementing the spatial smoothing step in

tensors, which is quite complicated especially when R
is large. According to (7), all we need to do is to reshape
the Rth-order tensor X̃D into the 2Rth-order tensor R̃.
Compared to spatial smoothing, extra multiplications
can be saved.

2) The coprime JADE in [15] is actually a special case of
our tensor model when R = 2. We formulated the space-
time processing using Kronecker products to define
space-time steering vectors on the coarray-lag domain.
By appropriately rearranging the data, the coprime JADE
model is seen to be equivalent to our tensor model
for R = 2. However, in this paper, the tensor model
can be generalized for larger R. In addition, the spatial
smoothing step in [15] can also be avoided.

3) Assuming the number of snapshots approaches infinity,
we obtain

lim
K→∞

R̃ =

D∑
i=1

σ2
iVU+ (µ̄) ◦ V∗U+ (µ̄) + σ2I, (8)

which owns a similar structure as that in (5). Hence,
according to [10], tensor decomposition on R̃ enables us
to define tensor MUSIC spectra, which will be discussed
in the following subsection.

B. Tensor MUSIC Spectrum for Sparse Arrays
In this subsection, two tensor MUSIC spectra for sparse

arrays will be proposed. One is based on HOSVD while the
other is built on CP. It will be shown that the MUSIC spectrum
based on HOSVD is actually a separable spectrum so that
it cannot resolve non-separable sources distributions. On the
other hand, the one based on CP can distinguish non-separable
source profiles.

Definition 1 (Tensor MUSIC for sparse array using HOSVD).
Let the high-order SVD of R̃ be

R̃ = K̃×1 Ũ1 ×2 Ũ2 ×3 · · · ×R ŨR

×R+1 Ũ
∗
1 ×R+2 Ũ

∗
2 ×R+3 · · · ×2R Ũ∗R,

where unitary matrices Ũr ∈ C|U
+
r |×|U+

r |. Splitting Ũr into
the signal/noise subspaces, denoted by Ũr,s and Ũr,n, respec-
tively, one can define a tensor MUSIC spectrum by

PSparse,HOSVD (µ̄)

=
∥∥∥VU+ (µ̄)×1 Ũ1,nŨ

H
1,n ×2 · · · ×R ŨR,nŨ

H
R,n

∥∥∥−2

F
. (9)

Theorem 1. PSparse,HOSVD (µ̄) is a product of R separable
MUSIC spectra. That is,

PSparse,HOSVD (µ̄) =

R∏
r=1

∥∥∥ŨH
r,nvU+

r

(
µ̄(r)

)∥∥∥−2

2
.

Proof. From Definition 1, we can simplify the tensor into(
Ũ1,nŨ

H
1,nvU+

1

(
µ̄(1)

))
◦ · · · ◦

(
ŨR,nŨ

H
R,nvU+

1

(
µ̄(R)

))
.

Taking the Frobenius norm of the above expression gives

PSparse,HOSVD (µ̄) =
∏R
r=1

∥∥∥Ũr,nŨ
H
r,nvU+

r

(
µ̄(r)

)∥∥∥−2

2
.

Since `2-norm is unitarily invariant, dropping the Ũr,n terms
completes the proof.

According to Theorem 1, PSparse,HOSVD (µ̄) generates
undesirable cross terms in the parameter space. For in-
stance, assume that there are D = 2 sources and the order
R of X S is 2. The actual source distribution is µ̄1 =
(0, 0.1) and µ̄2 = (−0.2,−0.1). If infinite-snapshots are
available and signal/noise subspaces are determined exactly,
PSparse,HOSVD (µ̄) has poles at µ̄1 and µ̄2. In addition, how-
ever, the cross terms µ̄12 = (0,−0.1) and µ̄21 = (−0.2, 0.1)
are also poles of PSparse,HOSVD (µ̄). Thus, by looking at
PSparse,HOSVD (µ̄), we will infer that there could be four
sources with parameter µ̄1, µ̄2, µ̄12, and µ̄21, respectively,
causing ambiguity in this tensor MUSIC spectrum.

A intuitive answer as to why cross terms come into
picture is as follows. If we match the tensor model (5)
with the signal/noise subspaces, we know that vU+

r

(
µ̄

(r)
i

)
belongs to the column space of Ur,s for i = 1, 2, . . . , D.
Therefore, UH

r,nvU+
r

(
µ̄

(r)
i

)
= 0. According to Theorem 1,

PSparse,HOSVD (µ̄i) goes to infinity. However, this approach
produces a separate MUSIC spectrum, as Theorem 1 states.
It ends up estimating parameters separately in different di-
mensions without considering the connection among them.



Surely there must exist a joint estimation approach to find
pairs of parameters in multiple dimensions. For instance, in
[4], tensor ESPRIT is built upon a joint Schur decomposition
or a simultaneous diagonalization algorithm. We need to seek
another definition of tensor MUSIC spectrum to incorporate
pairing information provided by our tensor model.

It can be observed from (8) that R̃ contains a low-rank com-
ponent, which is constructed from D rank-one tensors. These
components characterize a signal subspace, which enables us
to define a MUSIC spectrum. This idea can be summarized as
follows:

Definition 2 (Tensor MUSIC for sparse array using CP).
Consider the CP decomposition of R̃,

R̃ =

D∑
`=1

ã
(1)
` ◦ ã

(2)
` ◦ · · · ◦ ã

(R)
` ◦ ã(1)∗

` ◦ ã(2)∗
` ◦ · · · ◦ ã(R)∗

` .

We define a tensor Ũs ∈ C|S1|×···×|SR|×D that collects the
orthonormal bases that span

{
ã

(1)
` ◦ ã

(2)
` ◦ · · · ◦ ã

(R)
`

}
for

` = 1, . . . , D. The noise subspace is characterized by another
tensor Ũn, representing the associated orthonormal bases. The
tensor MUSIC spectrum via CP is defined as

PSparse,CP (µ̄) =

∥∥∥∥〈Ũn,VU+ (µ̄)
〉
{1,2,...,R}

∥∥∥∥−2

F

.

Note that this alternative tensor MUSIC spectrum is
based on another notion of signal/noise subspace. In
HOSVD, by contrast, the noise subspace was defined as
span

{
[Ũ1,n]` ◦ [Ũ2,n]` ◦ · · · ◦ [ŨR,n]`

}
, where [Ũr,n]` de-

notes the `th orthonormal column of Ũr,n, for all possible
`. We proved in Theorem 1 that the resulting tensor MUSIC
spectrum is equivalent to a separable MUSIC spectrum.

On the other hand, in the CP case, the signal subspace
becomes span

{
ã

(1)
` ◦ ã

(2)
` ◦ · · · ◦ ã

(R)
`

}
, where ` = 1, . . . , D,

and the noise subspace is the orthogonal complement of the
signal subspace. It can be seen that in this case, the noise
subspace does not have a trivial separable basis (even though
the signal subspace has). Hence, with CP, it is possible to
overcome the separable MUSIC spectrum problem in Theorem
1. It will be shown in Section IV that the tensor MUSIC
spectrum via CP produces a finer resolution spectrum and
avoids those false peaks, compared to other tensor MUSIC
spectra, such as in (6) or Definition 1.

IV. NUMERICAL RESULTS

In this section, we consider a coprime array with parameters
M = 3 and N = 5. The sensor locations are Sr =
{0, 3, 6, 9, 12, 5, 10, 15, 20, 25} for r = 1, . . . , R. The number
of sensors in each dimension |Sr| = 10. Ur are composed of
consecutive integers from −17 to 17. The SNR is 0dB, sources
have equal power, and the number of snapshots is 1000. The
number of sources is chosen to be D = 5 and known to the
MUSIC algorithms. Parameters µ̄ are randomly drawn from
their parameter space. The MATLAB Tensor Toolbox [19] is
used.

The first example, as shown in the first row of Fig. 1, con-
siders the joint angle-Doppler estimation (JADE), which is our
R = 2 case. Here we avoid implementing the spatial smooth-
ing step and calculate tensor MUSIC spectra alternatively
as in [15]. As a comparison, we evaluate PULA,HOSVD (µ̄)
(tensor MUSIC spectrum in [10]), PSparse,HOSVD (µ̄) (tensor
MUSIC spectrum for sparse arrays and HOSVD in Definition
1), and PSparse,CP (µ̄) (tensor MUSIC spectrum for sparse
arrays and CP in Definition 2). It can be seen from the results
that PULA,HOSVD (µ̄) and PSparse,HOSVD (µ̄) come from
products of two one-dimension MUSIC spectra, as Theorem
1 states. In addition, PSparse,HOSVD (µ̄) produces a cleaner
spectrum than PULA,HOSVD (µ̄) since the lines look sharper
in PSparse,HOSVD (µ̄). However, it is not obvious from the
pattern where these D sources are. By exploiting the CP de-
composition on R̃, we obtain a non-separable tensor MUSIC
spectrum PSparse,CP (µ̄) on the third column of Fig. 1. D = 5
sources can be seen without cross-term issues.

In the second example, we set R = 3, which corresponds to
joint estimation of azimuth, elevation, and Doppler informa-
tion across a two-dimensional separable coprime array with
coprime samplers at the output of sensors. In principle, the
tensor MUSIC spectrum becomes a three-dimensional profile.
To visualize such spectrum, the surfaces that are above a
threshold in the tensor MUSIC spectrum are shown in the sec-
ond row of Fig. 1. This threshold is set to be one percent of the
maximal value in that spectrum. These observations are still
consistent with the previous example. PULA,HOSVD (µ̄) and
PSparse,HOSVD (µ̄) exhibit cross terms and undesired lines
while PSparse,CP (µ̄) correctly results in five distinguishable
regions that disclose the actual source characteristics.

V. CONCLUDING REMARKS

In this paper, we first formulated a tensor R̃ that is
equivalent to implementing spatial smoothing in the coarray
domain. Tensor decomposition on R̃ allowed us to define a
tensor MUSIC spectrum. Using HOSVD, it was proved that
the resultant tensor MUSIC spectrum is actually a separable
spectrum that comes with unwanted cross-terms. On the other
hand, tensor MUSIC spectrum via CP produces a much better
result than that of HOSVD.

Future research will be directed toward the theoretical anal-
ysis of these tensor approaches, such as the maximal number
of detectable sources, and the Cramér-Rao lower bound for
sparse arrays. Furthermore, the HOSVD and the joint Schur
decomposition in the context of tensor MUSIC can also be a
research topic in the future.

APPENDIX: TENSOR NOTATIONS

• The outer product is A ◦ B ∈ CI1×...IN×J1×...JM such
that [A ◦B]i1,...,iN ,j1,...,jM = [A]i1,...,iN [B]j1,...,jM .

• The inner product (〈·, ·〉) between A and C is

〈A,C〉 =

I1∑
i1=1

· · ·
IN∑
iN=1

[A]
∗
i1,...,iN

[C]i1,...,iN .
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Fig. 1. Tensor MUSIC spectrum for D = 5 sources distributed at random in a R-dimensional tensor model. The maximal value of each MUSIC spectrum is
normalized to be 1. In the R = 2 case, darker regions denote larger values in the MUSIC spectrum. When R = 3, the red portions indicate locations where
MUSIC spectrum is above 0.01.

• The contraction product 〈D,E〉{1,...,N} satisfies[
〈D,E〉{1,...,N}

]
j1,...,jM ,k1,...,kO

=

I1∑
i1=1

· · ·
IN∑
iN=1

[D]
∗
i1,...,iN ,j1,...,jM

[E]i1,...,iN ,k1,...,kO ,

where 1 ≤ ip ≤ Ip, 1 ≤ jq ≤ Jq , 1 ≤ kr ≤ Kr,
p = 1, . . . , N , q = 1, . . . ,M , and r = 1, . . . , O.

• The Frobenius norm ‖·‖F of A is ‖A‖F =
√
〈A,A〉.

• The n-mode product (×n) takes a tensor A and a matrix
U ∈ CJn×In such that

[A×nU]i1,...,in−1,jn,in+1,...,iN
=

In∑
in=1

[A]i1,...,iN [U]jn,in ,

where 1 ≤ i` ≤ I`, 1 ≤ jn ≤ Jn, and ` = 1, . . . , N .
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