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ABSTRACT

Sparse arrays can identify O(N2) uncorrelated sources using N
physical sensors. This property is because the difference coarray,
defined as the differences between sensor locations, has uniform lin-
ear array (ULA) segments of lengthO(N2). It is empirically known
that, for sparse arrays like minimum redundancy arrays, nested ar-
rays, and coprime arrays, this O(N2) segment is susceptible to sen-
sor failure, which is an important issue in practical systems. This pa-
per presents the (k-)essentialness property, which characterizes the
combinations of the failing sensors that shrink the difference coar-
ray. Based on this, the notion of fragility is proposed to quantify
the reliability of sparse arrays with faulty sensors, along with com-
prehensive studies of their properties. It is demonstrated through
examples that there do exist sparse arrays that are as robust as ULA
and at the same time, they enjoyO(N2) consecutive elements in the
difference coarray.

Index Terms— Sparse arrays, robustness, essentialness, fragility.

1. INTRODUCTION

Sparse arrays, which have nonuniform sensor spacing, have recently
attracted considerable attention in array signal processing [1–4]. Un-
like uniform linear arrays (ULA), which resolveO(N) uncorrelated
sources, some sparse arrays are capable of identifying O(N2) un-
correlated sources using N physical sensors. These arrays include
minimum redundancy arrays (MRA) [2], nested arrays [3], coprime
arrays [4], and their generalizations [5, 6]. This O(N2) property is
because the difference coarray, defined as the differences between
the sensor locations, possesses an O(N2)-long central ULA seg-
ment. By analyzing the samples on the difference coarray, quite a
few direction-of-arrival (DOA) estimators have been shown to re-
solve more uncorrelated sources than sensors [3, 7, 8].

In practice, sensor failure is an important issue for the reliability
of the overall system. It is empirically known that, for most sparse
arrays, faulty sensors could shrink the O(N2)-long ULA segment
in the difference coarray significantly. Furthermore, small ULA seg-
ments in the difference coarray typically lead to performance degra-
dation [3, 7–9]. Due to these observations, in the past, sparse arrays
were considered to be not robust to sensor failure. However, the im-
pact of damaged sensors on sparse arrays remains to be analyzed,
since these observations assume specific array configurations.

The issue of sensor failure was addressed in the literature in two
aspects, including 1) developing new algorithms that are functional
in the presence of sensor failure and 2) analyzing the robustness of
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array geometries. In the first part, various approaches have been
developed, including DOA estimators based on minimal resource al-
location network [10], impaired array beamforming and DOA es-
timation [11], and so on [12, 13]. However, the interplay between
the array configuration and the exact condition under which these
algorithms are applicable, remains to be investigated. The second
aspect assesses the robustness of array configurations with faulty el-
ements [14, 15]. For instance, Alexiou and Manikas [14] proposed
various measures to quantify the robustness of arrays while Carlin
et al. [15] performed a statistical study on the beampattern with a
given element failure rate. Even so, the impact of damaged elements
on the difference coarray has not yet been analyzed in a deterministic
fashion, which is crucial for sparse arrays.

In this paper, we propose the k-essentialness property and the
fragility to investigate the influence of faulty sensors on the differ-
ence coarray. The main focus of this paper is not to develop new al-
gorithms, but to analyze the robustness of arrays. An element is said
to be essential if its deletion changes the difference coarray. Note
that the essentialness property, introduced to study the economy of
sensors [16], depends purely on the array geometry, instead of the
source parameters and the estimators. It will be shown in this paper
that the essentialness property can be used to assess the robustness of
the array geometry, in the sense of preserving the difference coarray.
Furthermore, if there are multiple damaged elements, the concept
of k-essentialness enables us to study the interplay between failure
patterns and the difference coarray. By enumerating the k-essential
subarrays, the robustness is quantified by the fragility, which ranges
from 0 to 1. An array is more robust or less fragile if the fragility is
closer to 0. It will be shown that, some sparse arrays are as robust as
the ULA even though they possess a O(N2)-long ULA segment in
the difference coarray.

Paper outline: Section 2 reviews the theory of sparse ar-
rays. Section 3 proposes the essentialness, the k-essentialness,
the fragility, and the related properties. Section 4 compares the
essentialness property and the fragility among several known array
configurations while Section 5 concludes this paper.

2. REVIEW OF SPARSE ARRAYS

Assume that D monochromatic and far-field sources with wave-
length λ impinge on a sensor array, where the sensor locations are
nλ/2. Here n belongs to an integer set S. Let θi ∈ [−π/2, π/2] and
Ai ∈ C be the DOA and the complex amplitude of the ith source,
respectively. The array output of the sensor array S, denoted by xS,
is modeled as

xS =

D∑
i=1

AivS(θ̄i) + nS ∈ C|S|, (1)



where vS(θ̄i) , [ej2πθ̄in]n∈S is the steering vector and nS is the
noise term. The normalized DOA is defined as θ̄i , (sin θi)/2 ∈
[−1/2, 1/2]. It is assumed that the sources and the noise are zero-
mean and uncorrelated. Namely, if s , [A1, . . . , AD,n

T
S ]T , then

we have E[s] = 0 and E[ssH ] = diag(p1, . . . , pD, pnI), where pi
and pn are the powers of the ith source and the noise, respectively.
Under these assumptions, the covariance matrix of xS becomes [3]:

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (2)

Vectorizing (2) and removing duplicated entries lead to the autocor-
relation vector xD on the difference coarray:

xD =

D∑
i=1

pivD(θ̄i) + pne0 ∈ C|D|, (3)

where e0 is a column vector with 1 in the middle (the (|D|+1)/2-th
element) and 0 elsewhere. The difference coarray D is defined as

Definition 1. The difference coarray of the sensor array S is
defined as D , {n1 − n2 : n1, n2 ∈ S}.

Note that (3) can be regarded as the output defined on the dif-
ference coarray, instead of that on the physical array (1). If sensor
locations are designed properly, the size of the difference coarray
can be much larger than the size of the physical array. In particular,
|D| = O(|S|2). This property makes it possible to develop coarray-
based DOA estimators that resolve more uncorrelated sources than
sensors and achieve better spatial resolution [3, 4, 7, 8].

Next we will define some useful quantities regarding the differ-
ence coarray. The central ULA segment of D is defined as U , {m :
{0,±1, . . . ,±|m|} ⊆ D}. The smallest ULA containing D is de-
noted by V , {m ∈ Z : min(D) ≤ m ≤ max(D)}. An integer h
is said to be a hole in the difference coarray if h ∈ V but h /∈ D. A
difference coarray is hole-free if D = U = V.

Definition 2. The weight function w(m) of an array S is de-
fined as the number of sensor pairs with coarray index m. That is,
w(m) =

∣∣{(n1, n2) ∈ S2 : n1 − n2 = m}
∣∣.

Example 1. Consider the array S = {0, 1, 4, 5}. According to
Definition 1, the difference coarray is D = {0,±1,±3,±4,±5}. It
can be shown that U = {0,±1} and V = {0,±1, . . . ,±5}. There-
fore, ±2 are holes in the difference coarray. The weight function
w(1), for instance, is 2 since there are two sensor pairs (1, 0) and
(5, 4) with difference 1.

It is known that the difference coarray plays a significant role
in DOA estimation based on (3). For instance, the performance of
coarray MUSIC relies on U [3,8,9,17]. In addition, the performance
of any unbiased DOA estimator using sparse arrays is known to be
limited by the difference coarray [9, 18, 19].

Now let us review some existing array geometries and their dif-
ference coarrays. First, the ULA with N elements [1] is denoted
by the set SULA , {0, 1, . . . , N − 1}. The difference coarray for
ULA is DULA = {±0,±1, . . . ,±(N − 1)}. It can be shown that
|DULA| = 2N − 1 = O(N). Next, the nested array [3] is defined
as Snested , {1, 2, . . . , N1, (N1 + 1), 2(N1 + 1), . . . , N2(N1 +
1)}, where N1 and N2 are positive integers. The difference coar-
ray of the nested array is Dnested = {0,±1, . . . ,±(N2(N1 + 1) −
1)}. Given N elements, if N1 and N2 are approximately N/2, the
size of the difference coarray can be shown to be |D| = O(N2)
[3]. Finally, the coprime array is parameterized by a pair of in-
tegers (M,N) whose greatest common divisor is 1. The sensors
for the coprime array are located at Scoprime , {0,M, . . . , (N −
1)M,N, 2N, . . . , (2M − 1)N}. It can be shown that the differ-
ence coarray for the coprime array has holes [4] and the central

ULA segment is Ucoprime = {0,±1, . . . ,±(MN + M − 1)} [5].
Namely, |Ucoprime| = 2MN + 2M − 1 = O(MN), and there are
|Scoprime| = N + 2M − 1 = O(M +N) physical sensors.

3. ESSENTIALNESS AND FRAGILITY

It was known in [8] that coarray MUSIC is applicable to the auto-
correlation vector on U as long as |U| > 1. However, it will be
demonstrated in Example 2 that U is susceptible to sensor failure.
For certain array geometries, even one damaged physical element
could alter U significantly and coarray MUSIC may fail.

Example 2. Consider the array geometry S = {0, 1, 2, 4, 6}
which has difference coarray D = {0,±1, . . . ,±6} = U. In
this case, the coarray MUSIC algorithm can be used, since |U| =
13 > 1. Now suppose the sensor located at 1 fails. The new
array configuration and the associated difference coarray becomes
S1 = {0, 2, 4, 6} and D1 = {0,±2,±4,±6}, respectively. So
|U1| = 1 and the coarray MUSIC algorithm is not applicable. On
the other hand, if the element at 2 fails, we have S2 = {0, 1, 4, 6}
and D2 = {0,±1, . . . ,±6}. Since |U2| = 13 > 1, the coarray
MUSIC algorithm can still be implemented.

Example 2 shows that, the location of the faulty sensors could
modify the difference coarray, which influences the applicability of
coarray MUSIC. Note that, even if the difference coarray changes,
there might exist other DOA estimators that work on the new differ-
ence coarray. However, this scenario will be left for future work.

The concept that difference coarray changes after the removal of
sensors from the array configuration is described by the essentialness
property [16]:

Definition 3. The sensor located at n ∈ S is said to be essential
with respect to S if the difference coarray changes when sensor at n
is deleted from the array. That is, if S̃ = S\{n}, then D̃ 6= D. Here
D and D̃ are the difference coarrays for S and S̃, respectively.

The sensor at n ∈ S is said to be inessential if it is not essential.
For instance, in Example 2, the element at 1 is essential but the one
at 2 is inessential. In addition, it can be shown that, for any S, the
sensors at max(S) and min(S) are both essential. A sensor array S
is said to be maximally economic if all the sensors in S are essen-
tial [16]. It can be shown [16] that some well-known array configu-
rations, such as MRA [2], minimum hole arrays [20], nested arrays
with N2 ≥ 2 [3], and Cantor arrays [21], are maximally economic.

The essentialness property was originally introduced in [16] to
study symmetric arrays and Cantor arrays. The main focus in [16]
was the economy of sensors. However, the emphasis in this paper is
the observation that the essentialness property also characterizes the
importance of each element in preserving the difference coarray, as
demonstrated in Example 2. This interpretation leads to the robust-
ness analysis of array configurations, as we will develop later. In
addition, the essentialness property enables us to deploy sensors of
different quality, since the essential sensors typically require devices
with low failure rate, as opposed to inessential sensors.

If two sensors are inessential, it means that either one of them
can be removed without changing the coarray. But if both sensors
are removed, the coarray may change. The k-essentialness property
is useful to handle multiple sensor failures:

Definition 4. A subarray A ⊆ S is said to be k-essential if 1)
|A| = k, and 2) the difference coarray changes when A is removed
from S. Namely, D̃ 6= D if S̃ = S\A. Here D and D̃ are the differ-
ence coarrays of S and S̃, respectively.

Note that essentialness, as defined in Definition 3, is equivalent
to 1-essentialness (k = 1 in Definition 4). Namely, n ∈ S is essen-



tial if and only if {n} ⊆ S is 1-essential. For brevity, we will use
these terms interchangeably.

Example 3. Assume the array configuration is the ULA with 6
elements. We have S = {0, 1, . . . , 5} and D = {0,±1, . . . ,±5}.
It can be shown that 0 and 5 are both essential, but the remaining
elements are inessential. Using Definition 4, it can be further shown
that {1, 4} is 2-essential. This is since the difference coarray for
S\{1, 4} is {0,±1,±2,±3,±5}. This example shows that two ele-
ments, such as 1 and 4, could be individually inessential, but together
the subarray, {1, 4}, could be 2-essential.

Definition 4 enables us to define the family of sets that contains
all the k-essential subarrays, called the k-essential family:

Definition 5. The k-essential family Ek with respect to a sensor
array S is defined as

Ek , {A : A is k-essential with respect to S}, (4)

where k = 1, 2, . . . , |S|.
Given an array configuration S, the k-essential family is uniquely

determined, by examining all possible subarrays. From the com-
putational perspective, enumerating all these subarrays becomes
intractable as the number of sensors increases. Even so, it is still
possible to determine or bound the cardinality of the k-essential
family, as in Proposition 1. This is proved at the end of this Section.

Proposition 1. Let Ek be the k-essential family with respect to
a nonempty integer set S. Then the following properties hold true:

1. (|S| − k)|Ek| ≤ (k + 1)|Ek+1| for all 1 ≤ k ≤ |S| − 1. The
equality holds if and only if |Ek| =

(|S|
k

)
.

2. |Ek| =
(|S|
k

)
for all |S| − |E1|+ 1 ≤ k ≤ |S|.

3. If S is maximally economic, then |Ek| =
(|S|
k

)
for all 1 ≤

k ≤ |S|.
4. Let Mp = |{m ∈ D : w(m) = p}| be the number of el-

ements in the difference coarray such that the associated
weight function is p. If |S| ≥ 2, then⌈

1 +
√

1 + 4M1

2

⌉
≤ |E1| ≤ min

{
M1 +

⌊
M2

2

⌋
, |S|
}
,

(5)

where d·e and b·c are the ceiling function and the floor func-
tion, respectively.

These propositions show that the size of the k-essential family is
closely related to the number of sensors |S| and the weight function
w(m), which can be readily computed from the array geometry.

If |Ek| =
(|S|
k

)
for some k, then S is not necessarily maximally

economic. For instance, for the array configuration in Example 2,
it can be shown that E5 = {{0, 1, 2, 4, 6}} and |E5| = 1 =

(
5
5

)
.

However, as shown in Example 2, S is not maximally economic.
Proposition 1.4 shows an elegant relation between the number of

essential sensors and the weight function. This result is analogous to
Cheeger inequalities in graph theory [22], where the Cheeger con-
stant is bounded by the expressions regarding the eigenvalues of the
adjacency matrix of certain graphs. Here in (5), the number of es-
sential sensors is analogous to the Cheeger constant. The bounds
in (5) depend on the weight functions, which are known to be the
eigenvalues of the matrix JHJ, or the singular values squared of the
matrix J [23]. It was shown in [23] that the matrix J indicates the
topology of the physical array and the difference coarray, which is
analogous to the adjacency matrix of a graph.

Example 4. Let us verify Proposition 1.4 using an example.
The MRA with 6 sensors has S = {0, 1, 6, 9, 11, 13}. According
to the Definition 2, we obtain M1 = 22 and M2 = 4. The lower

bound in (5) is given by d(1 +
√

89)/2e = d5.217e = 6 while the
upper bound becomes min{24, 6} = 6. On the other hand, using
Definition 5, we have |E1| = 6, which verifies (5).

The size of the k-essential family also indicates the likelihood
that the difference coarray changes after the removal of k elements.
For instance, if |Ek| =

(|S|
k

)
, it means any k-sensor failure out of

|S| sensors changes the difference coarray. The notion of fragility is
useful to capture this idea.

Definition 6. The fragility or k-fragility of a sensor array S is
defined as

Fk ,
|Ek|(|S|
k

) , (6)

where k = 1, 2, . . . , |S|.
The physical interpretation of fragility is as follows. Suppose

there are k faulty sensors in the array. The fragility is the proba-
bility that the difference coarray changes, given all failure patterns
occur with equal probability. Larger Fk indicates that this array
configuration is less robust, or more fragile to sensor failure, in
the sense of changing the difference coarray.

The following present some properties of the k-fragility Fk:
Proposition 2. Let S be an integer set denoting the sensor loca-

tions. The k-fragility Fk with respect to S has these properties:

1. 0 ≤ Fk ≤ 1 for all 1 ≤ k ≤ |S|.
2. Fk ≤ Fk+1 for all 1 ≤ k ≤ |S| − 1. The equality holds if

and only if Fk = 1.

3. Fk = 1 for all |S| − |E1|+ 1 ≤ k ≤ |S|.
4. If S is maximally economic, then Fk = 1 for all 1 ≤ k ≤ |S|.

Proof. These results are direct consequences of Proposition 1 and
Definition 6.

The k-fragility Fk is a notion of probability due to Proposition
2.1. Proposition 2.3 indicates that the difference coarray definitely
changes after the deletion of more than |S|− |E1| elements. Proposi-
tion 2.4 implies that maximally economic sparse arrays are the most
fragile or the least robust arrays.

Proof of Proposition 1: Before proving Proposition 1, the fol-
lowing lemmas will be invoked:

Lemma 1. Let D and D̃ be the difference coarrays of S and S̃,
respectively. If S̃ ⊆ S, then D̃ ⊆ D.

Proof. Let m ∈ D̃. By definition, there exist n1, n2 ∈ S̃ such that
n1 − n2 = m. Since S̃ ⊆ S, we have n1, n2 ∈ S, implying m ∈ D.
This completes the proof.

Lemma 2. Assume that A and B are sets such that A ⊆ B ⊆ S.
If A ∈ E|A|, then B ∈ E|B|.
Proof. Assume that S1 , S\A and S2 , S\B. The difference
coarrays of S, S1, and S2 are denoted by D, D1, and D2, respectively.
The notation X ⊂ Y denotes that X is a subset of Y but X 6= Y. We
will show that D2 ⊆ D1 ⊂ D. First, since A ⊆ B ⊆ S, we have
S2 ⊆ S1, implying D2 ⊆ D1 due to Lemma 1. Second, due to
the definition of the k-essential family, A ∈ E|A| is equivalent to
D1 ⊂ D. Hence D2 ⊂ D, which means B ∈ E|B|.

Lemma 3. [16]. If n1, n2 ∈ S and w(n1 − n2) = 1, then n1

and n2 are both essential.
Now let us move on to the proof of Proposition 1:
1): This proof technique can be found in [24]. Let us count the

number of pairs (A,B) for all A ∈ Ek and all B ∈ Ek+1 such that
A ⊂ B. Let P be the number of such pairs. For every n1 ∈ S but
n1 /∈ A, it can be shown that A ⊆ A ∪ {n1} ⊆ S and therefore
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Fig. 1. The physical array (red dots and green squares) and the non-
negative parts of the difference coarray (blue dots) for (a) ULA, (b)
the nested array with N1 = N2 = 8, (c) the coprime array with
M = 4, N = 9, (d) the concatenated nested array N1 = 3, N2 =
10, and (e) the symmetric MRA. The number of physical sensors
is 16 for all arrays. The red dots and green squares represent the
essential sensors and the inessential sensors, respectively. The gray
crosses denote empty space.

A ∪ {n1} ∈ Ek+1, due to Lemma 2. Since (A,A ∪ {n1}) has
|S\A||Ek| choices, we have

P = (|S| − k)|Ek|. (7)

Similarly, it can be shown that B\{n2} ⊂ B ⊆ S, for all B ∈
Ek+1 and n2 ∈ B. However, the statement that B\{n2} ∈ Ek,
(the converse of Lemma 2), is not necessarily true. Therefore, by
counting the number of n2 and B, we have

P ≤ (k + 1)|Ek+1|, (8)

with equality if and only if B\{n2} ∈ Ek for all B ∈ Ek+1 and all
n2 ∈ B. Combining (7) and (8) proves the inequality. The equality
holds if and only if (A ∪ {n1})\{n2} ∈ Ek. Therefore |Ek| = 0 or(|S|
k

)
. Since min(S) and max(S) are essential, Ek is not empty. This

proves the condition for equality.
2): Let us consider any subarray A ⊆ S such that |A| = k ≥

|S|−|E1|+1. The cardinality of S\A becomes |S|−k ≤ |E1|−1 <
|E1|, implying that there is at least one essential element in A. Due
to Lemma 2, A is k-essential.

3): Let A be any subarray of S with size k. Let n be any element
in A. Since S is maximally economic, n is essential. Furthermore,
since {n} ⊆ A ⊆ S, we have A ∈ Ek, due to Lemma 2. The above
arguments prove this proposition.

4): The proof is sketched as follows. Let Sp = {n1, n2 :
w(n1 − n2) = p} ⊆ S be the sensors such that the associated
weight function is p. The set Gp is defined as

Gp = {n : {n} ∈ E1, n ∈ Sp, n /∈ Sp−1, . . . , n /∈ S1}. (9)

It can be shown that {G1,G2} is a partition of all the essential el-
ements. Due to Lemma 3, the size of G1 satisfies |G1| ≤ M1 ≤
2
(|G1|

2

)
, implying (1 +

√
1 + 4M1)/2 ≤ |G1| ≤ M1. For the size

of G2, it can be shown that 0 ≤ |G2| ≤M2/2. The second inequal-
ity is due to the case that S = {0, s, 2s}, where s is a positive integer.
We have w(s) = w(−s) = 2,M2 = 2, but s ∈ G2. This means
two instances of w(m) = 2 could lead to one essential element.
Combining the inequalities for G1 and G2 proves this proposition.

4. NUMERICAL EXAMPLES

Let us consider the following arrays: ULA [1], the nested array [3],
the coprime array [4], the concatenated nested array [6], and the
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Fig. 2. The k-fragility Fk for the array configurations in Fig. 1.

symmetric MRA [16, Fig. 1(c)]. The number of sensors is assumed
to be 16 for all arrays and the corresponding parameters are listed in
the caption of Fig. 1.

Fig. 1 depicts the array geometries and the difference coarrays.
Note that only the nonnegative part of the difference coarray is
shown in Fig. 1, due to its symmetry [23]. It can be deduced that the
sizes of the difference coarrays are 31 for ULA, 143 for the nested
array, 103 for the coprime array, 85 for the concatenated nested
array, and 59 for the symmetric MRA. Most of the arrays have hole-
free difference coarrays, except the coprime array. Furthermore,
these arrays have O(N2) elements in the difference coarray, except
the ULA (O(N)) [1, 3, 4, 6, 16].

The essentialness property of these arrays is also shown in Fig. 1,
where the essential sensors and the inessential sensors are illustrated
in red dots and green squares, respectively. The least number of
essential sensors is exhibited by ULA and symmetric MRA (2), fol-
lowed by the concatenated nested array (4), the coprime array (13),
and finally the nested array (16), which is maximally economic.

Fig. 2 plots the k-fragility Fk over all these array configurations.
Here these curves are computed by enumerating all possible subsets
in Definition 5. These results verify Proposition 2. For instance, as
in Propositions 2.1 and 2.2, the k-fragility Fk is an increasing func-
tion ranging from 0 to 1. Proposition 2.4 can be verified through the
nested array example, where this maximally economic sparse array
has the k-fragility Fk = 1, as shown in Fig. 1(b) and Fig. 2, respec-
tively. By comparing the k-fragility Fk for all k, it can be deduced
that the ULA is the most robust array configuration, followed by the
symmetric MRA, the concatenated nested array, the coprime array,
and finally the nested array. In particular, as far as F1 is concerned,
the symmetric MRA is as robust as ULA, but the symmetric MRA
possessesO(N2) elements in the hole-free difference coarray. Note
that the symmetric nested array, defined as the union of the nested
array and its reversed version [16], can be shown to have F1 = 2/N
for N ≥ 4, which is as robust as ULA, and at the same time enjoys
hole-free difference coarrays of size O(N2) [25].

5. CONCLUDING REMARKS

This paper presented the concept of essentialness, k-essentialness,
and fragility for arbitrary array configurations. These novel mea-
sures quantify the robustness of arrays in the presence of sensor
failure. It was shown that maximally economic sparse arrays are
the least robust arrays while the ULA, empirically, is the most ro-
bust one. There also exist sparse arrays withO(N2) elements in the
hole-free difference coarray that are as robust as ULA.

In the future, it is of considerable interest to analyze the k-
essential family for several array configurations, such as ULA and
coprime arrays. Another direction is to analyze the probability that
the difference coarray changes under random sensor failures.
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