One-Bit Sparse Array DOA Estimation

Chun-Lin Liu¹ and P. P. Vaidyanathan²

Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu¹, ppvnath@systems.caltech.edu²

ICASSP 2017, New Orleans, USA

1 Introduction (DOA, Sensor Arrays, ...)

- 2 Review of One-Bit Quantization
- 3 One-Bit DOA Estimators for Sparse Arrays
- 4 Numerical Examples
- 5 Concluding Remarks

1 Introduction (DOA, Sensor Arrays, ...)

2 Review of One-Bit Quantization

3 One-Bit DOA Estimators for Sparse Arrays

4 Numerical Examples

Direction-Of-Arrival (DOA) estimation¹

¹Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

Sensor arrays and quantization: An example¹

Array configuration	One-bit quantization	$MSE = \frac{1}{D} \sum_{i=1}^{D} (\hat{\bar{\theta}}_i - \bar{\theta}_i)^2$	
Uniform Linear Array	No	2.525×10^{-6}	(Existing)
	Yes	6.936×10^{-6}	(Proposed)
Nested array	No	2.077×10^{-7}	(Existing)
	Yes	7.060×10^{-7}	(Proposed)

Nested array + one-bit has smaller MSE than ULA, No Q.

¹10 sensors, 5 sources, 0dB SNR, 200 snapshots, equal-power and uncorrelated sources, $\bar{\theta}_i = 0, \pm 0.2, \pm 0.4, 5000$ runs.

ULA and sparse arrays

ULA (not sparse)

- Identify at most N 1 uncorrelated sources, given N sensors.¹
- Can only find fewer sources than sensors.

Linear sparse arrays

- Minimum redundancy arrays²
- 2 Nested arrays³
- 3 Coprime arrays⁴
- 4 Super nested arrays⁵
 - Identify O(N²) uncorrelated sources with O(N) physical sensors.

More sources than sensors!

²Moffet, IEEE Trans. Antennas Propag., 1968.

¹Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

³Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010.

⁴Vaidyanathan and Pal, IEEE Trans. Signal Proc., 2011.

⁵Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

Nested arrays¹

For sufficient number of snapshots, $(|\mathbb{U}| - 1)/2 = O(N_1N_2)$ uncorrelated sources can be identified. $(\mathbb{U} = \text{Central ULA part of } \mathbb{D})$

¹Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010.

Review of One-Bit Quantization

3 One-Bit DOA Estimators for Sparse Arrays

4 Numerical Examples

One-bit quantization¹

If x is a real number, then

$$y = \operatorname{sgn}(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ -1, & \text{if } x < 0. \end{cases}$$

If u is a complex number, then

$$v = Q_1(u)$$

= $\frac{1}{\sqrt{2}} \Big(\operatorname{sgn}(\operatorname{Re}(u)) + j \operatorname{sgn}(\operatorname{Im}(u)) \Big).$

Advantages

- Low cost
- 2 Low complexity
- 3 Reduced data rate
- Moderate performance loss
- 5 Applications in massive MIMO systems

¹ Jacovitti and Neri, IEEE Trans. Inf. Theory, 1994; Bar-Shalom and Weiss, IEEE Trans. Aerosp. Electron. Syst., 2002; Lu, Li, Swindlehurst, Ashikhmin, and Zhang, IEEE J. Sel. Topics in Signal Proc., 2014; Larsson, Edfors, Tufvesson, and Marzetta, IEEE Commun. Mag., 2014; Risi, Persson, and Larsson, arXiv:1404.7736 [cs.17], 2014; Stöckle, Munir, Mezghani, and Nossek, SPAWC, 2015; Björnson, Larsson, and Marzetta, IEEE Commun. Mag., 2016; Stein, Barbe, and Nossek, WSA, 2016.

Second-order statistics of the quantized data

The arcsine law¹

$$R_Y(\tau) = \frac{2}{\pi} \sin^{-1} \left(\frac{R_X(\tau)}{R_X(0)} \right),$$

where $R_X(\tau) \triangleq \mathbb{E}[X(t+\tau)X(t)]$ and $R_Y(\tau) \triangleq \mathbb{E}[Y(t+\tau)Y(t)]$. The Bussgang theorem²

 $R_{XY}(\tau) = CR_X(\tau),$

where $R_{XY}(\tau) \triangleq \mathbb{E}[X(t+\tau)Y(t)]$ and *C* is a constant.

¹Van Vleck and Middleton, Proc. of the IEEE, 1966.

²Bussgang, Tech. Rep. 216, Res. Lab. Elec., Mas. Inst. Technol., 1952.

The arcsine law for complex vectors

$$\mathbf{R}_{\mathbf{y}_{\mathbb{S}}} = \frac{2}{\pi} \operatorname{sine}^{-1}(\overline{\mathbf{R}}_{\mathbf{x}_{\mathbb{S}}}),$$

where

R_{ys}: the covariance matrix of y_S.
sine⁻¹(·): entrywise arcsine function on real and imaginary parts.²

$$\overline{\mathbf{R}}_{\mathbf{x}_{\mathbb{S}}} = \mathbf{Q}^{-1/2} \mathbf{R}_{\mathbf{x}_{\mathbb{S}}} \mathbf{Q}^{-1/2}:$$

Normalized covariance matrix.³

¹Jacoviti and Neri, *IEEE Trans. Inf. Theory*, 1994; Bar-Shalom and Weiss, *IEEE Trans. Aerosp. Electron. Syst.*, 2002. ² $[sine^{-1}(\mathbf{A})]_{p,q} = sin^{-1}(Re([\mathbf{A}]_{p,q})) + jsin^{-1}(Im([\mathbf{A}]_{p,q})).$ ³Q is a diagonal matrix satisfying $[\mathbf{Q}]_{q,q} = [\mathbf{R}_{\mathcal{S}}]_{q,q}.$

3 One-Bit DOA Estimators for Sparse Arrays

4 Numerical Examples

Proposed one-bit DOA estimator for sparse arrays

The spatial smoothing MUSIC Algorithm¹

- **1** Sample autocorrelation function on the difference coarray: $\tilde{\mathbf{x}}_{\mathbb{D}}$.
- 2 ULA segment of $\widetilde{\mathbf{x}}_{\mathbb{D}}$.

3 Hermitian Toeplitz matrix $\widetilde{\mathbf{R}}$ (indefinite matrix).

$$\widetilde{\mathbf{R}} = \begin{bmatrix} \langle \widetilde{\mathbf{x}}_{U} \rangle_{0} & \langle \widetilde{\mathbf{x}}_{U} \rangle_{-1} & \dots & \langle \widetilde{\mathbf{x}}_{U} \rangle_{-14} \\ \langle \widetilde{\mathbf{x}}_{U} \rangle_{1} & \langle \widetilde{\mathbf{x}}_{U} \rangle_{0} & \dots & \langle \widetilde{\mathbf{x}}_{U} \rangle_{-13} \\ \vdots & \vdots & \ddots & \vdots \\ \langle \widetilde{\mathbf{x}}_{U} \rangle_{14} & \langle \widetilde{\mathbf{x}}_{U} \rangle_{13} & \dots & \langle \widetilde{\mathbf{x}}_{U} \rangle_{0} \end{bmatrix}$$

4 MUSIC on $\widetilde{\mathbf{R}}$ resolves $(|\mathbb{U}| - 1)/2 = O(N^2)$ uncorrelated sources.

¹Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010; Liu and Vaidyanathan, IEEE Signal Proc. Letters, 2015.

Liu and Vaidyanathan (Caltech)

Normalized covariance matrix in SS MUSIC

- SS MUSIC: the original covariance matrix R_{x_s}.
- One-bit data: the normalized covariance matrix $\overline{\mathbf{R}}_{\mathbf{x}_{s}}$.

Lemma

If the source amplitudes are uncorrelated, then

 $\mathbf{R}_{\mathbf{x}_{\mathbb{S}}} = P \overline{\mathbf{R}}_{\mathbf{x}_{\mathbb{S}}},$

where $P = \sum_{i=1}^{D} p_i + p_n$ is the total power.

For Gaussian uncorrelated sources and sufficient snapshots, we have

- 1 Eigenvalues of $\mathbf{R}_{\mathbf{x}_{\mathbb{S}}} = P \times \text{Eigenvalues of } \overline{\mathbf{R}}_{\mathbf{x}_{\mathbb{S}}}$
- 2 Eigenspace of $\mathbf{R}_{\mathbf{x}_{\mathbb{S}}} = \mathsf{Eigenspace}$ of $\overline{\mathbf{R}}_{\mathbf{x}_{\mathbb{S}}}$
- 3 They share the same SS MUSIC spectra.

2 Review of One-Bit Quantization

3 One-Bit DOA Estimators for Sparse Arrays

4 Numerical Examples

One-bit MUSIC spectra (10 sensors, 15 sources)¹

¹200 snapshots, 0dB SNR, equal-power and uncorrelated sources, $MSE = \sum_{i=1}^{D} (\hat{\bar{\theta}}_i - \bar{\theta}_i)^2 / D$.

MSE vs SNR (10 sensors, 5 sources)¹

¹200 snapshots, equal-power and uncorrelated sources, $\bar{\theta}_i = 0, \pm 0.2, \pm 0.4, \text{MSE} = \sum_{i=1}^{D} (\hat{\bar{\theta}}_i - \bar{\theta}_i)^2 / D.$

MSE vs snapshots (10 sensors, 5 sources)¹

¹0dB SNR, equal-power and uncorrelated sources, $\bar{\theta}_i = 0, \pm 0.2, \pm 0.4, \text{MSE} = \sum_{i=1}^{D} (\hat{\bar{\theta}}_i - \bar{\theta}_i)^2 / D.$

- 2 Review of One-Bit Quantization
- 3 One-Bit DOA Estimators for Sparse Arrays
- 4 Numerical Examples

Concluding remarks

- DOA estimator with
 - uncorrelated complex Gaussian sources,
 - sparse arrays, and
 - one-bit quantized data.
- Empirically, sparse arrays with one-bit quantization can perform better than ULA without quantization for large SNR or sufficient snapshots.
- Future work: Performance analysis.
- Acknowledgement: the plenary talk on massive MIMO systems by Prof. Swindlehurst at the IEEE SAM workshop in 2016.
- Work supported by Office of Naval Research.

Thank you!