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ABSTRACT
One-bit quantization has become an important topic in massive
MIMO systems, as it offers low cost and low complexity in the
implementation. Techniques to achieve high performance in spite
of the coarse quantizers have recently been advanced. In the con-
text of array processing and direction-of-arrival (DOA) estimation
also, one bit quantizers have been studied in the past, although not
as extensively. This paper shows that sparse arrays such as nested
and coprime arrays are more robust to the deleterious effects of
one-bit quantization, compared to uniform linear arrays (ULAs); in
fact, sparse arrays with one-bit quantizers are often found to be as
good as ULAs with unquantized data. Nested and coprime arrays
without quanitzers are known to be able to resolve more DOAs
than the number of sensors, when sources are uncorrelated. It will
be demonstrated that this continues to be true even with one-bit
quantization.

Index Terms— One-bit quantization, sparse arrays, nested ar-
rays, coprime arrays, DOA estimation.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation, which calculates the source
directions from sensor measurements, arises in many important top-
ics such as radar, beamforming, imaging, and communications [1–
5]. In these applications, the sensor measurements over multiple
snapshots are collected first. Then one calculates the sample covari-
ance matrix, from which the DOA estimates are obtained. However,
it is expensive to represent sensor measurements using many bits, as
it requires high speed and high resolution analog-to-digital convert-
ers (ADC), adders, and multipliers. The power consumption of such
systems is also an important issue [6].

Recently, one-bit quantization, which records the sign of real
and imaginary parts of measurements, has been gaining momentum
in massive MIMO systems [7–10]. One-bit quantizers offer signif-
icantly low cost and low complexity, while still maintaining good
performance in massive MIMO systems [10, 11]. Furthermore, in
circuit design, it is much simpler to design, calibrate, and imple-
ment the one-bit ADC, than the high resolution ones [6]. In array
processing also, the one-bit quantizers have been used in DOA es-
timation [7, 12, 13]. In particular, it was demonstrated in [13] that,
for uniform linear arrays (ULA) and one Gaussian source, the per-
formance loss introduced by one-bit quantization is moderate.

The DOA estimation performance depends highly on the array
configurations. It is well-known that ULAs with N sensors can re-
solve up to N − 1 noncoherent sources [4]. Sparse arrays such as
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nested and coprime arrays can identifyO(N2) uncorrelated sources,
and also enjoy a smaller Cramér-Rao bound for DOA estimation
error, than ULAs [14–16], since the difference coarrays for sparse
arrays contain O(N2) consecutive integers. Some popular sparse
arrays include minimum redundancy arrays (MRA) [17], nested ar-
rays [14], coprime arrays [18], and some generalizations [19–21].
Unlike MRAs, nested arrays and coprime arrays possess closed-form
sensor locations. It was demonstrated amply that spatial smoothing
MUSIC (SS MUSIC) can estimate more DOAs than sensors using
sparse arrays [14, 15].

In this paper, we will propose a new DOA estimator using one-
bit measurements on sparse arrays. While the covariance matrix of
the unquantized data cannot be recovered from the quantized data,
the so-called normalized covariance of the unquantized data can still
be estimated, by using some extensions [22] of the well-known arc-
sine law [23] in statistics. We will show that by performing SS MU-
SIC based on this normalized covariance, the DOAs can still be esti-
mated satisfactorily. The performance of the proposed estimator will
be assessed through numerical examples. For fixed number of sen-
sors, the proposed estimator using one-bit data on sparse arrays can
even outperform the ULA with unquantized data, for a wide range of
parameters. Thus, the degradation due to one-bit quantization can,
to a significant extent, be countered using sparse arrays. We will
also demonstrate that sparse arrays with one-bit quantizers can still
resolve more DOAs than the number of sensors, as they do in the
unquantized case [14–16].

The outline of this paper is as follows: Section 2 and 3 re-
view sparse arrays and one-bit quantization, respectively. An one-
bit sparse array DOA estimator based on SS MUSIC, is proposed in
Section 4. Section 5 gives several examples for the proposed estima-
tor while Section 6 concludes this paper.

2. DOA ESTIMATION USING SPARSE ARRAYS

Assume that D monochromatic, far-field, and uncorrelated sources
illuminate an one-dimensional sensor array, where the sensors are
located at position nλ/2. Here λ is the wavelength and n belongs to
an integer set S. The sensor measurements can be modeled as

xS =

D∑
i=1

AivS
(
θ̄i
)

+ nS ∈ C|S|, (1)

where Ai ∈ C, θi ∈ [−π/2, π/2], and θ̄i = (sin θi)/2 ∈
[−1/2, 1/2] denote the complex amplitude, the DOA, and the
normalized DOA of the ith source, respectively. The steering vec-
tor of the ith source is defined as vS(θ̄i) = [ej2πθ̄in]n∈S and nS
is the additive noise term. The cardinality of S is denoted by |S|.
Let s = [A1, . . . , AD,n

T
S ]T . It is assumed that s is a circularly-

symmetric complex Gaussian random vector satisfying E[s] = 0 and



E[ssH ] = diag(p1, . . . , pD, pn, . . . , pn). Here diag(a1, . . . , aN )
is the diagonal matrix with diagonals a1, . . . , aN . The ith source
power and the noise power are denoted by pi and pn, respectively.

The covariance matrix of xS can be expressed as

RxS =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI ∈ C|S|×|S|. (2)

Vectorizing and combining duplicate entries in (2) give the correla-
tion vector xD on the difference coarray:

xD = J†vec(RxS) =

D∑
i=1

pivD(θ̄i) + pne0 ∈ C|D|, (3)

where the difference coarray D is defined as

Definition 1 (Difference coarray). For an array specified by
an integer set S, its difference coarray D is defined as D =
{n1 − n2 | ∀n1, n2 ∈ S} .

The column vector e0 in (3) satisfies 〈e0〉m = δm,0, where
m ∈ D and δi,j is the Kronecker delta. Here 〈·〉m denotes the signal
value on the support m ∈ D [24]. For instance, if D = {−3, 0, 3}
and xD = [2 + j, 3, 2 − j]T , then 〈xD〉−3 = 2 + j, 〈xD〉0 = 3,
and 〈xD〉3 = 2 − j. The term J† in (3) denotes the Moore-Penrose
pseudoinverse of J, where J is defined as follows [16]

Definition 2 (The matrix J). The binary matrix J has size |S|2-by-
|D|. The columns of J satisfy 〈J〉:,m = vec(I(m)) for m ∈ D,
where I(m) ∈ {0, 1}|S|×|S| is given by

〈I(m)〉n1,n2 =

{
1, if n1 − n2 = m,

0, otherwise.
∀n1, n2 ∈ S.

Furthermore, the weight function w(m) is defined as the num-
ber of nonzero entries in I(m). It can be shown that JHJ =
diag(w(m))m∈D [16]. The model for xD, as in (3), can be regarded
as D coherent sources on D. This property admits DOA estimators
on xD, such as SS MUSIC [14, 15, 24].

The most important merit of DOA estimators on xD is that,
O(N2) uncorrelated sources can be resolved using only O(N)
physical sensors. This is because the size of xD is |D| = O(N2)
for some sparse arrays. In particular, let the central ULA seg-
ment of D be the set U. Then, up to (|U| − 1)/2 uncorre-
lated sources can be identified by SS MUSIC [14, 15]. For in-
stance, the coprime array in Fig. 1(c) has the difference coarray
D = {0,±1, . . . ,±17,±19,±20,±22,±25}, and the set U =
{0,±1, . . . ,±17}. Hence SS MUSIC can identify (|U|−1)/2 = 17
uncorrelated sources.

Nested arrays [14] and coprime arrays [15,18] are two classes of
sparse arrays that satisfy |U| = O(N2) withO(N) physical sensors.
A nested array with N1 + N2 sensors, as depicted in Fig. 1(b), has
the following sensor locations:

Snested = {1, . . . , N1, (N1 + 1), . . . N2(N1 + 1)} , (4)

where N1 and N2 are positive integers. The difference coarrays
for nested arrays are exactly ULAs, namely, Dnested = Unested =
{0,±1, . . . ,±(N2(N1 + 1) − 1)}. Fig. 1(c) illustrates a coprime
array withN + 2M −1 sensors, whereM andN are a coprime pair
of positive integers. The sensor locations for coprime arrays are

Scoprime = {0,M, . . . , (N−1)M,N, . . . , (2M−1)N} . (5)

The difference coarrays for coprime arrays have a long ULA seg-
ment Ucoprime = {0,±1, . . . ,±(MN +M −1)}, and some missing
elements (holes) outside Ucoprime [15, 19].

(a) • • • • • • • • • •
0 1 2 3 4 5 6 7 8 9

(b) • • • • • • • • • •××××× ××××× ××××× ×××××
1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Dense ULA
N1 elements

Sparse ULA
N2 elements

1 N1 + 1

(c) • • • • •• • • • •×× × ×× × ×× ×××× ××××
0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Sparse ULA
N elements

Sparse ULA
2M − 1 elements

M N

Fig. 1. The array configurations for (a) ULA with 10 sensors, (b) a nested
array with N1 = N2 = 5, and (c) a coprime array with M = 3 and N = 5.
Here bullets denote sensors while crosses represent empty space.

3. ONE-BIT QUANTIZATION

In this section, we will review some statistical properties of one-
bit quantization, such as the arcsine law for real scalars [23, 25],
the Bussgang theorem [26], and the arcsine law for complex vectors
[7, 22, 27], which is valuable for one-bit DOA estimators.

Historically speaking, the autocorrelation function of one-bit
data was studied by Van Vleck and Middleton [23, 25]. They con-
sidered a continuous-time, real, scalar, and stationary Gaussian
process X(t) and the output process Y (t) = f(X(t)), where f(x)
is a memoryless amplitude-distortion function. If f(x) is the sign
function (one-bit quantizer), then the autocorrelation function of
Y (t), denoted by RY (τ), is described by the arcsine law:

RY (τ) , E[Y (t+ τ)Y (t)] =
2

π
sin−1 R̄X(τ), (6)

where R̄X(τ) = RX(τ)/RX(0) is the normalized autocorrelation
function of X(t). Hence, by observing the one-bit data in Y (t),
we can recover the normalized autocorrelation of the unquantized
data. This elegant result has been applied to radio astronomy [28],
biomedical engineering [29], and communications [30].

Furthermore, under the same assumption, the Bussgang theo-
rem [26] states that, the cross-correlation between X(t) and Y (t)

is proportional to the autocorrelation of X(t). That is, RXY (τ) ,
E[X(t+τ)Y (t)] = CRX(τ), where the factorC depends purely on
the characteristics of f(x) and the power of X(t). The significance
of the Bussgang theorem is that, the output process Y (t), which is
typically a nonlinear function of X(t), is equivalent to a linear func-
tion of X(t), as far as second order statistics is concerned. This idea
has found applications in communications [31], and even in neuro-
science [32].

Note that (6) applies if the processX(t) is real and scalar. In the
following development, we will consider the complex vector case
[7, 22, 27]. For the complex vector xS in (1), the one-bit quantized
measurement vector yS is defined as

yS =
1√
2

sgne(xS) ∈ C|S|, (7)

where the qth entry of sgne(xS) is given by [sgne(xS)]q =
sgn(Re([xS]q)) + jsgn(Im([xS]q)). Here the sign function sgn(x)
is 1 if x is nonnegative and −1 otherwise. Re(z) and Im(z) denote
the real and the imaginary parts of z, respectively. The factor 1/

√
2

normalizes the power of yS. So the entries of yS take four discrete
values (±1± j)/

√
2.



Next we will review the arcsine law for complex Gaussian vec-
tors. First, the normalized covariance matrix of xS is defined as

RxS = Q−1/2RxSQ
−1/2, (8)

where Q is a diagonal matrix satisfying [Q]q,q = [RxS ]q,q . Un-
like the scalar case, RxS is not necessarily a scalar multiple of RxS .
Then, the arcsine law for xS and yS is

RyS , E[ySy
H
S ] =

2

π
sine−1(RxS), (9)

where the (p, q)th element of sine−1(A) is [sine−1(A)]p,q =
sin−1(Re(Ap,q)) + j sin−1(Im(Ap,q)). Here Ap,q denotes the
(p, q)th entry of A. Note that the arcsine law for complex vectors
(9) resembles that for real scalars (6), except for the definition of
the arcsine function. It can also be shown from (8) that the real and
imaginary parts of the entries of RxS are between -1 and 1.

The implication of (9) is, the normalized covariance RxS can be
estimated from the covariance of one-bit data, based on the following
expression [7, 22, 27]:

RxS = sine
(π

2
RyS

)
, (10)

where the (p, q)th element of sine(A) is given by [sine(A)]p,q =
sin(Re(Ap,q)) + j sin(Im(Ap,q)).

4. ONE-BIT DOA ESTIMATORS WITH SPARSE ARRAYS

According to (10), the normalized covariance RxS , instead of the
original one RxS , can be recovered from RyS . However, most DOA
estimators require the original covariance matrix RxS . Next we
will show that, RxS is enough for the purpose of DOA estimation
if sources are uncorrelated. Similar results were reported for one
source and ULAs [7, 13]. Here we assume multiple uncorrelated
sources and sparse arrays.

The proposed one-bit DOA estimator using sparse arrays is sum-
marized as follows:

1. Define the normalized correlation vector xD as

xD = J†vec
(
RxS

)
= J†vec

(
sine

(π
2
RyS

))
. (11)

2. Let the normalized correlation vector on the ULA segment
of the coarray be xU. Construct a Hermitian Toeplitz matrix
R satisfying 〈R〉n1,n2 = 〈xU〉n1−n2 , as formulated in [24].
Here n1, n2 ∈ U+, which is the nonnegative part of U.

3. Eigen-decompose the matrix R and split the signal and noise
subspace according to the magnitude of the eigenvalues of
R. Let the orthonormal bases of the noise subspace be the
columns of Un.

4. Calculate the MUSIC spectrum by

Hnormalized(θ̄) =
1∥∥UH

n vU+(θ̄)
∥∥2

2

,

and locate the peaks in P (θ̄). Here vU+(θ̄) are the steering
vectors on the nonnegative part of the set U. The peak loca-
tions are the estimated normalized DOAs.

A fundamental question here is, what are the differences be-
tween the SS MUSIC spectrum Hnormalized(θ̄) and the SS MUSIC
spectrum Horiginal(θ̄) derived from the original covariance matrix
RxS? It will be shown that Hnormalized(θ̄) = Horiginal(θ̄), implying
that, with sufficient snapshots, SS MUSIC with the quantized data
yS makes no difference from SS MUSIC with the unquantized data
xS. This claim is due to the following lemma:

Lemma 1. Assume the sources are uncorrelated. Then, with RxS

and RxS defined as in Eqs. (2) and (8), we have RxS = PRxS ,

where P =
∑D
i=1 pi + pn > 0 is the total power.

Proof. According to (8), the diagonal entry of Q associated with the
sensor location n1, is given by

〈Q〉n1,n1
=

〈
D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI

〉
n1,n1

=

D∑
i=1

pie
j2πθ̄in1e−j2πθ̄in1 + pn = P,

which implies Q = P I. Using (8) proves this lemma.

In other words, for uncorrelated sources, the normalized covari-
ance matrix of xS is a positive scaled version of the covariance ma-
trix of xS. Combining Lemma 1, (3), and (11) gives xD = P xD.
Let the Hermitian Toeplitz matrix corresponding to RxS be R. We
have R = PR, so R and R share the same noise subspace. Hence
Hnormalized(θ̄) = Horiginal(θ̄).

It is known that, with sufficient snapshots, O(N2) uncorrelated
sources can be resolved using the original correlation vector xD, if
sparse arrays, like nested arrays or coprime arrays, with O(N) sen-
sors are deployed. Since xD = P xD, the same argument holds true
for the normalized covariance matrx RxS and the normalized corre-
lation vector xD. Namely, even with one-bit measurements, it is still
possible to identify more sources than sensors using sparse arrays,
if there are enough snapshots. This claim will be verified through
examples in Section 5.

The above discussion assumes ideal covariance matrices. In the
following developement, we will consider the finite snapshot sce-
nario, in which the normalized correlation vector xD is replaced with
its finite snapshot version, whereas the remaining steps are still ap-
plicable. Let the one-bit measurements be ỹS(k) for k = 1, . . . ,K.
Due to (11), the normalized correlation vector can be estimated as

x̃D = J†vec

(
sine

(
π

2K

K∑
k=1

ỹS(k)ỹHS (k)

))
. (12)

Eq. (12) has several advantages in terms of hardware implementa-
tion. First of all, evaluating

∑D
k=1 ỹS(k)ỹHS (k) requires only ad-

dition, because ỹS(k) take only four values (±1 ± j)/
√

2. Sec-
ond, the real and imaginary parts in the argument of sine are of
the form mπ/(4K), where the integer m satisfies −2K ≤ m ≤
2K. This property suggests that we can use either table lookup or
multiple-angle formulae of sine to accelerate the computation. Fi-
nally, the operation J†vec(·) can be implemented readily, since J† =
diag(1/w(m))JH has many zero entries and the weight functions
w(m) are integers [16].

Let the finite-snapshot Hermitian Toeplitz matrix based on x̃D

be R̃, as described in the second step in the proposed estimator. It

is known that R̃ is indefinite. Namely, the eigenvalues of R̃ could
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Fig. 2. The SS MUSIC spectra based on the one-bit data yS for (a) the
nested array (MSE = 6.2203× 10−6) and (b) the coprime array (MSE =
1.5816 × 10−5). There are D = 15 uncorrelated and equal-power sources
located at θ̄i = −0.4 + 0.8(i − 1)/14 for i = 1, . . . , 15, as indicated
by the vertical lines in the plots. Note that this is the case of more sources
than sensors (D = 15 > |S| = 10). Number of snapshots K = 200 and
SNR = 0dB.

be negative. This property does not affect the proposed DOA esti-
mators, since it was shown in [24] that the signal and noise subspace
can still be split correctly with indefinite matrices.

5. NUMERICAL RESULTS

In this section, we will study the DOA estimation performance with
one-bit quantization using sparse arrays. Let us consider the ULA
with 10 sensors, the nested array with N1 = N2 = 5, and the co-
prime array with M = 3 and N = 5. These arrays are also illus-
trated in Fig. 1. All these arrays have 10 sensors, but the number
of identifiable uncorrelated sources is 9 for ULA, 29 for the nested
array, and 17 for the coprime array, respectively. The sources are
assumed to have equal power. The number of sourcesD is known to
the estimators.

Fig. 2 plots the SS MUSIC spectra using sparse arrays and one-
bit quantized measurements, as described in Section 4. The pa-
rameters are D = 15 sources, 0dB SNR and 200 snapshots. The
sources are located at θ̄i = −0.4 + 0.8(i−1)/14 for i = 1, . . . , 15.
Here the number of sources is greater than the number of sensors
(D = 15 > |S| = 10), so the ULA will not be able to identify
the DOAs. It can be observed that in both plots, the peak locations
match with the true normalized DOAs, as indicated in vertical lines.
Hence, both arrays can resolve all these sources and the nested array
have slightly better performance (MSE = 6.2203× 10−6) than the
coprime array (MSE = 1.5816× 10−5). The mean-squared error is
defined as MSE =

∑D
i=1(̂̄θi − θ̄i)2/D and the estimated normal-

ized DOAs ̂̄θi are based on the root MUSIC algorithm. This example
shows that, it is possible to resolve more sources than sensors using
either nested arrays or coprime arrays, even from one-bit data.

Fig. 3(a) investigates the dependence of the MSE on SNR, for
fewer sources than sensors (D = 5 < |S| = 10). The curves with-
out quantization (solid lines) are obtained using SS MUSIC [14, 15]
while the dashed lines show the proposed DOA estimator with one-
bit data. First, if the measurements are not quantized, the least MSE
is exhibited by the nested array, followed by the coprime array, and
finally the ULA. This phenomenon is because the estimation error
is more likely to decrease with the size of the difference coarray
[14, 15]. Second, for the same array configuration, the one-bit quan-
tized measurements own larger MSE than the unquantized ones. The
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Fig. 3. The dependence of MSE for SS MUSIC and the proposed DOA
estimator on (a) SNR with 200 snapshots and (b) snapshots with 0dB SNR
for ULA, the nested array, and the coprime array. There are 10 sensors and 5
sources. Solid curves denote the performance without quantization (No Q.)
while dashed curves represent the MSEs with one-bit quantization (One-Bit).
The source normalized DOAs are θ̄i = −0.4 + 0.2(i− 1) for i = 1, . . . , 5.
Each data point is averaged from 5000 Monte-Carlo runs.

quantization loss, defined as 10 log10(MSEquantized/MSEunquantized),
is approximately 4 to 6 dB, which is in accordance with the previous
work [13]. Finally, the array configuration plays a very crucial role
in MSE. For instance, the coprime array with one-bit quantization
(the green dashed line) has similar performance to the ULA with-
out quantization (the blue solid curve). Furthermore, for sufficiently
large SNR, the nested array with one-bit quantization (the red dashed
curve) outperforms the ULA and the coprime array with no quanti-
zation. The same phenomenon can also be observed in Fig. 3(b), for
sufficient snapshots. Hence, in the context of DOA estimation, the
performance improvement due to sparse arrays can compensate the
degradation caused by one-bit quantization.

6. CONCLUDING REMARKS

This paper proposed a DOA estimator using one-bit data on sparse
arrays. The proposed one-bit quantized sparse arrays typically out-
perform unquantized ULAs for DOA estimation. Thus, the sparsity
of the arrays compensates for the one-bit quantizer, to some extent.
Furthermore, as in the case of unquantized sparse arrays, one-bit
sparse arrays can continue to identify more sources than sensors.

In the future, it is of considerable interest to analyze the perfor-
mance of the proposed DOA estimator and the exact condition under
which more sources than sensors can be identified, with one-bit mea-
surements.
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