Theorem
 Coarray MUSIC [3, 4], performance analysis [5]. Large difference coarray $(|\mathbb{D}|>\mathcal{O}(N))$
More uncorrelated sources than sensors [5].

Symmetric Arrays

Advantages: Simplified array design, implemen-
tation, and calibration; DOA estimators [6].

Theorem: New Design for

 Symmetric Arrays with Hole-Free \mathbb{D}(a): Minimum redundancy array, 9 elements

(b): The reversed version of (a), 9 elements
 (c): The union of (a) and (b), $\quad 16$ elements
 (1): Remove 4 and 25 from (c), 14 elements
 Array (1) is less expensive than array (c)

Maximally Economic Sparse Arrays Definition
A array \mathbb{S} is maximally economic if all the sensors in \mathbb{S} are essential.

Theorem
These Arrays are Maximally Economic Minimum redundancy arrays [1] (1024

Old Definition from the Cantor Set $[7,8]$

Theorem: \mathbb{D}_{r} for the Cantor Array

$\star \mathbb{D}_{r}$ is hole-free. (New) (1)
$\star\left|\mathbb{D}_{r}\right|=3^{r}=N^{\log _{2} 3} \approx N^{1.585}>\mathcal{O}(N)$. (New) (2)

The Cantor Array is Maximally Economic

Lemma

If $n_{1}, n_{2} \in \mathbb{S}$ and $w\left(n_{1}-n_{2}\right)=1$, then n_{1} and n_{2} are both essential with respect to \mathbb{S}.

Example

$\mathbb{S}_{3}=\{0,1,3,4,9,10,12,13\}$ is maximally economic $\mathrm{S}_{3}=$
since
$w_{3}(13-0)=w_{3}(12-1)=w_{3}(10-3)=w_{3}(9-4)=1$.
In general, \mathbb{S}_{r} is maximally economic. (New) 4.
Ongoing Work

The Essentialness Property and DOA Estimators
Some DOA estimators [4] rely on the central ULA

$$
\text { segment } \mathbb{U} \text {, instead of the difference coarray } \mathbb{D} \text {. }
$$

References

An

