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Abstract—Sparse arrays, where the sensors are properly placed
with nonuniform spacing, are able to resolve more uncorrelated
sources than sensors. This ability arises from the property that
the difference coarray, defined as the differences between sensor
locations, has many more consecutive integers (hole-free) than
the number of sensors. In some implementations, it might be
preferable that a) the arrays be symmetric, b) that the arrays
be maximally economic, that is, each sensor be essential, and c)
that the coarray be hole-free. The essentialness property of a
sensor means that if it is deleted, then the difference coarray
changes. Existing sparse arrays, such as minimum redundancy
arrays (MRA), nested arrays, and coprime arrays do not satisfy
these three criteria simultaneously. It will be shown in this paper
that Cantor arrays meet all the desired properties mentioned
above, based on a comprehensive study on the structure of the
difference coarray. Even though Cantor arrays were previously
proposed in fractal array design, their coarray properties have
not been studied earlier. It will also be shown that the Cantor
array has a hole-free difference coarray of size N log2 3 ≈ N1.585

where N is the number of sensors. This is unlike the sizes of
difference coarrays of the MRA, nested array, coprime array
(all O(N2)), and uniform linear arrays (O(N))1.

Index Terms—Symmetric arrays, sparse arrays, hole-free dif-
ference coarrays, maximally economic arrays, Cantor arrays.

I. INTRODUCTION

Sparse arrays find useful applications in direction-of-arrival
(DOA) estimation, which plays a central role in communica-
tion, radio astronomy, and radar [1]–[3]. It was known that
for certain sparse arrays, such as minimum redundancy arrays
(MRA) [4], nested arrays [5], and coprime arrays [6], it is
possible to identify more uncorrelated sources than sensors.
This property is due to the fact that the difference coarray,
defined as the differences between physical sensor locations,
contains a contiguous segment much greater than the number
of sensors [4]–[6]. In particular, it is desirable that the dif-
ference coarray is hole-free, that is, it consists of consecutive
integers. Therefore all information on the difference coarray
can be exploited [5].

In some implementations, arrays with symmetric geometry
are preferred, as they simplify computational complexity [7],
facilitate array calibration in presence of mutual coupling [8],
[9], and improve DOA estimation performance [10]–[12]. In
this paper, we consider symmetric arrays with the further
property that each sensor be essential in the sense that if it
is deleted, the coarray will lose at least one element (thereby
compromising DOA performance and identifiability). The es-
sentialness property ensures economy of sensors. Hence such
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arrays are called maximally economic arrays. It is true that
maximally economic arrays are less robust to sensor failures,
compared to arrays like ULA which have redundant sensors
[13]. But in this paper, our focus is economy which is ensured
by the essentialness property. It turns out that standard arrays
such as the ULA, MRA, and nested and coprime arrays do not
simultaneously satisfy symmetry and maximal economy. For
example, the ULA has many inessential sensors [1] whereas
the MRA, nested, and coprime arrays are nonsymmetric [4],
[5], [14].

In this paper, we will study the Cantor arrays [15]–[17],
which are sparse arrays with a fractal geometry [18], [19].
They are symmetric arrays, with sensor locations specified
in closed form. The main contribution of this paper resides
in a comprehensive study of the properties of the difference
coarrays for the Cantor arrays, while the previous work mainly
focused on the array factors [15]–[17]. It will be shown that
Cantor arrays are maximally economic. We also derive explicit
expressions for the weight functions and show that the differ-
ence coarray is hole-free. Moreover, the size of the difference
coarrays for the Cantor array with N = 2r (r = 0, 1, 2, . . . )
physical sensors is 3r, which is N log2 3 ≈ N1.585. This result
is quite distinct from ULA, MRA, nested arrays, and coprime
arrays, where ULA has O(N) elements in the difference
coarray and the remaining ones have O(N2) elements.

The outline of this paper is as follows. Section II reviews the
data model and the design criteria for sparse arrays. Section
III proposes the essentialness property for sensor arrays while
Section IV defines the Cantor array and studies its difference
coarray in detail. Finally, Section V concludes this paper.

II. PRELIMINARIES

Assume that D monochromatic sources illuminate a sensor
array, where the sensors are located at nλ/2. Here n belongs
to an integer set S and λ is the wavelength of the incoming
sources. Suppose that the ith source has complex amplitude
Ai ∈ C and DOA θi ∈ [−π/2, π/2). The array output xS is
modeled as

xS =

D∑
i=1

AivS(θ̄i) + nS ∈ C|S|, (1)

where θ̄i = (sin θi)/2 ∈ [−1/2, 1/2) is the normalized
DOA of the ith source. The steering vector vS(θ̄i) satisfies
〈vS(θ̄i)〉n = ej2πθ̄in, where the bracket notation 〈·〉n repre-
sents the sample value on the support location n [20], [21].
The additive noise vector is nS. It is assumed that the sources



and noise are zero-mean and uncorrelated. Namely, the ex-
pectations E[s] = 0 and E[ssH ] = diag(p1, p2, . . . , pD, pnI),
where s , [A1 A2 . . . AD nTS ]T . The powers of the
ith source and the noise vector are denoted by pi and pn,
respectively.

The covariance matrix of xS can be expressed as

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (2)

Vectorizing RS and removing duplicate elements yield

xD =

D∑
i=1

pivD(θ̄i) + pne0 ∈ C|D|, (3)

where the vector e0 satisfies 〈e0〉m = δm,0 [20], [21]. Here
δp,q is the Kronecker delta function. The difference coarray is
defined as

Definition 1. Difference coarray. The difference coarray D
contains the differences between the elements in S, i.e., D =
{n1 − n2 : ∀n1, n2 ∈ S}.

Here the array output xS on the physical array is converted
into the autocorrelation vector xD on the difference coarray. If
some properties of the difference coarray are satisfied, then it is
possible to identify more uncorrelated sources than sensors by
using DOA estimators on the autocorrelation vectors [5], [22],
[23]. In the following development, some desired properties of
the difference coarray will be elaborated.

To begin with, let us define some related quantities. The
reversed version of an array S is defined as Ŝ = {max(S) +
min(S) − n : n ∈ S}. An array is symmetric if S = Ŝ. The
central ULA segment of D is defined by the set U , {m :
{−|m|, . . . ,−1, 0, 1, . . . , |m|} ⊆ D}. The shortest ULA con-
taining D is denoted by V , {m : min(D) ≤ m ≤ max(D)}.
h is a hole in the difference coarray if h ∈ V and h /∈ D. A
difference coarray D is said to be hole-free if D = U = V.
The weight function is defined as follows:

Definition 2. The weight function w(m) is the num-
ber of sensor pairs with separation m. Namely, w(m) ,
|{(n1, n2) : n1 − n2 = m}| .

With these quantities, we now move on to some desired
design criteria regarding the physical array and the difference
coarray:

Criterion 1. Hole-free difference coarray. If D is hole-free,
then all the entries in the autocorrelation vector can be utilized
directly by algorithms such as coarray MUSIC [5]. If D is not
hole-free, then coarray interpolation has to be done before
applying coarray MUSIC, which could increase the overall
complexity significantly [24]–[27].

Criterion 2. Large difference coarray. It was shown that
large difference coarray not only increases the number of
resolvable sources [5], [21], [28] but also leads to higher
spatial resolution in estimating the DOAs [4], [5], [28]. It is
also desirable that the size of the difference coarray |D| grows
much faster than the number of physical array |S|.

Criterion 3. Symmetric physical array. As mentioned in
Sec. I, symmetric arrays are sometimes preferred [7]–[12].

However, array configurations that satisfy the above three
properties simultaneously, have not yet been fully explored.
Consider some existing array configurations like ULA, MRA,
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Fig. 1. (a) MRA with 9 sensors; (b) the reversed version of (a); (c) the union
of (a) and (b); (d) array configuration after removing 4 and 25 from (c). Here
red dots denote sensors while multiplication signs represent empty space.
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Fig. 2. The coprime array with M = 4 and N = 5, the essential sensors,
and the inessential sensors. The physical sensors are shown in red dots.

nested arrays, and coprime arrays. ULAs have hole-free dif-
ference coarrays, whose size is only O(N) [1]. MRAs enjoy
the largest hole-free difference coarray, but they do not have
explicit sensor locations [4]. Nested arrays can achieve large
hole-free difference coarrays (size O(N2)) with closed forms
[5]. Coprime arrays own large difference coarrays (O(N2))
and closed-form sensor locations, but there are holes in the
difference coarray [14]. Furthermore, these arrays, except for
ULAs, are all nonsymmetric.

In fact, it is quite straightforward to construct arrays sat-
isfying Criteria 1, 2, 3 from existing nonsymmetric arrays
with large hole-free difference coarrays. As an example, let us
consider the MRA with 9 sensors, as depicted in Fig. 1(a). We
first construct its reversed version with respect to the center
of the array. The resultant array is shown in Fig. 1(b). The
union of Figs. 1(a) and 1(b) results in a new array geometry,
as illustrated in Fig. 1(c). It can be shown that 1) Fig. 1(c)
is symmetric and 2) it shares the same hole-free difference
coarray as Figs. 1(a) and 1(b).

However, some elements in Fig. 1(c) can be removed and
the new array configuration still satisfies Criteria 1 to 3. For
instance, if the elements 4 and 25 are removed from Fig.
1(c), then the new array, as shown in Fig. 1(d), is symmetric
and it can be shown that the new array has the same hole-
free difference coarray as Fig. 1(c). In practice, Fig. 1(d) is
more cost-effective than Fig. 1(c) since it has fewer number
of sensors. This example shows that, apart from Criteria 1,
2, and 3, we need some notion to quantify the importance of
each sensor, as we shall propose next.

III. THE ESSENTIALNESS PROPERTY

A sensor is said to be essential if the following holds:
Definition 3. Let S be the physical array and D be the

difference coarray. The sensor located at n ∈ S is said to be
essential with respect to S if the difference coarray changes
when sensor n is deleted from the array. That is, if S′ =
S\{n}, then D′ 6= D.

We also say that a sensor is inessential if it is not essential.
Notice that if sensors n1 and n2 are inessential, it does
not mean that they can both be deleted without changing
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Fig. 3. The relations between the Cantor arrays with (a) r = 3 and (b) r = 4.
Here the dots denote sensors while the multiplication signs represent empty
space.

the coarray. But we can remove either one of them without
changing the coarray. If each sensor in an array is essential in
the above sense, the array is said to be maximally economic. It
can be shown that MRA and nested arrays are both maximally
economic while ULAs and coprime arrays are not.

Fig. 2 demonstrates an example for the essential sen-
sors and the inessential sensors in the coprime array with
M = 4 and N = 5. Here the sensor locations are given
by {0,M, 2M, . . . , (N − 1)M,N, 2N, . . . , (2M − 1)N} [14].
The essentialness property is examined numerically according
to Definition 3. It can be shown that some of the sensors
are inessential, such as the ones located at 5, 15, and 20.
This means that, for example, removing the element 20 does
not influence the difference coarray. This phenomenon is in
accordance with what was reported in [29].

Apart from the design criteria in Section II, we will con-
sider another array design criterion regarding the essentialness
property:

Criterion 4. Maximally economic arrays. This criterion is
important if the physical sensors are expensive.

The following lemma shows that the essential sensors are
closely related to the weight functions, as follows:

Lemma 1. If n1, n2 ∈ S and w(n1−n2) = 1, then n1 and
n2 are both essential.

Proof: The statement that w(n1−n2) = 1 for n1, n2 ∈ S
implies that (n1, n2) is the only sensor pair with separation
m = n1 − n2. If n1 is removed from S, then the element
m is also removed from the difference coarray. Hence n1 is
essential. Similar arguments apply to n2.

Lemma 1 is useful in identifying the essential sensors. Note
that the converse of Lemma 1 is not necessarily true. For
instance, consider the array S = {0, 1, 2}. It can be shown
that the difference coarray is D = {−2,−1, 0, 1, 2}, the weight
function w(1) = 2, but all the sensors are essential.

IV. SYMMETRIC SPARSE ARRAYS

In this section, we will study an array configuration that
satisfies Criteria 1, 2, 3, and 4, simultaneously. This array has
a very simple and computational tractable recursive definition,
which enables us to explicitly write down the expressions for
the weight function (Lemma 2). Note that this array is closely
related to Cantor arrays in fractal array design [15]–[17].
Hence in the following development, the array of interest will
be called Cantor arrays, even though our definition is different
from those in [15]–[17].

Next, given an array Sr for a nonnegative integer r, we
define the translated array Tr , {n +Dr : ∀n ∈ Sr}, where
Dr , 2Ar + 1, with Ar denoting the aperture of Sr, that is,
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Fig. 4. The weight function for the Cantor arrays with (a) r = 3 and (b)
r = 4.

Ar , max(Sr) −min(Sr). With this, we are ready to define
a Cantor array:

Definition 4. The Cantor array Sr is defined recursively as

Sr , Sr−1 ∪ Tr−1,

where S0 , {0}.
Notice that Sr has N = 2r sensors. So, Cantor arrays are

defined only for power-of-two N .
The details of Definition 4 are demonstrated in Fig. 3

through a numerical example. Fig. 3(a) depicts the Cantor
array with r = 3, as denoted by the set S3. Due to Definition
4, the first half of S4 is S3 while the second half is T3. The
amount of translation is given by D3 = 2A3+1 = 2×13+1 =
27. It can be seen that S3 and S4 are both symmetric arrays.

The arrays in Definition 4 are equivalent to the Cantor array
proposed in [15]–[17], with proper amount of translation and
scaling. The Cantor arrays in [15]–[17] are built upon the
Cantor sets in fractal theory [18], [19]. But here we start with
a different definition (Definition 4), which will facilitate the
discussion on its coarray properties next.

Compared to the related work [15]–[17], the main contri-
bution of this paper is as follows: The past work on Cantor
arrays focused on the array factor and the quantities of interest
were the main lobe width and the side lobe levels. In this
paper, we focus on the aspect of difference coarrays, with
focus on Criteria 1, 2 and 4. To the best of our knowledge,
these properties for Cantor arrays have not been investigated
in the literature.

Now let us move on to the properties of the Cantor arrays.
It can be readily shown that the Cantor arrays are symmetric
arrays with |Sr| = 2r physical sensors, based on Definition 4.
Besides, the weight function of the Cantor array is given by
the following lemma, proved in Appendix A:

Lemma 2. For the Cantor array with parameter r in
Definition 4, the weight function wr(m) satisfies

wr(m) =


2wr−1(m), if |m| ≤ Ar−1,

wr−1(m±Dr−1), if |m±Dr−1| ≤ Ar−1,

0, otherwise,
(4)

where Ar and Dr are defined as in Definition 4.
Lemma 2 shows that the weight function for the Cantor

array Sr can be recursively constructed from the weight
function for Sr−1. To give some feelings for Lemma 2, we



first utilize Definition 2 to evaluate the weight functions for
the Cantor arrays with r = 3 and r = 4, as depicted in Fig.
4(a) and 4(b), respectively. It can be deduced that the support
is from −13 to 13 for w3(m) and from −40 to 40 for w4(m).
The weight function w4(m) can be divided into three parts,
as marked by rectangles. Then (4) can be verified through
the rectangles in Fig. 4. For instance, the weight functions
w3(10) = 2 and w4(10) = 4 satisfy the first equation of (4).

Furthermore, Lemma 2 makes it possible to prove the hole-
free property (Corollary 1), and the size of the difference
coarray (Corollary 2), as we shall show next:

Corollary 1. The difference coarrays of Cantor arrays are
hole-free.

Proof: This corollary can be proved by mathematical
induction. First it can be readily shown that S0 has a hole-
free difference coarray. Next, assume that Sr−1 has a hole-
free difference coarray. Then, due to Lemma 2, the difference
coarray for Sr becomes Dr = {m,m±Dr−1 : ∀m ∈ Dr−1}.
Since Dr−1 is hole-free, the terms m−Dr−1, m, and m+Dr−1

have consecutive integers from −(3Ar−1 +1) to −(Ar−1 +1),
from −Ar−1 to Ar−1, and from Ar−1 + 1 to 3Ar−1 + 1,
respectively. This means Dr is also hole-free.

Note that the continuous analogy to Corollary 1 can be
found in [30] and the references therein.

Corollary 2. The size of the difference coarrays for the
Cantor array with parameter r is 3r.

Proof: This can also be proved using mathematical in-
duction. It can be readily shown that |D0| = 1, based on
Definition 4. Next, assume that |Dr−1| = 3r−1. Due to the
proof of Corollary 1, we have |Dr| = 2(3Ar−1 + 1) + 1 =
3(2Ar−1 + 1) = 3Dr−1 = 3|Dr−1| = 3r.

As a remark, since the Cantor array with parameter r has
|Sr| = 2r sensors, the size of difference coarray becomes

|Dr| = |Sr|log2 3 ≈ |Sr|1.585. (5)

Note that the exponent log2 3 ≈ 1.585 in (5) is in fact the
reciprocal of the fractal dimension of the Cantor set [18], [19].
The relation (5) is quite different from ULA (|D| = O(|S|))
and MRA (|D| = O(|S|2)). This means that, for the same
large number of elements, the MRA has the largest difference
coarray, followed by the Cantor array, and finally the ULA.
However, unlike the MRA, the Cantor array has closed-form
and symmetric sensor locations.

The last result is the essentialness property of the Cantor
array and the proof can be found in Appendix B:

Lemma 3. Cantor arrays are maximally economic.
Finally, let us consider Fig. 4(a) as an example to verify

Corollary 1, Corollary 2, and Lemma 3. Since the support of
the weight function is the difference coarray, it can be seen
that D3 ranges from −13 to 13. Hence D3 is hole-free and
|D3| = 27 = 33. Furthermore, Fig. 4(a) shows that

w3(13− 0) = w3(12− 1) = w3(10− 3) = w3(9− 4) = 1.

Hence the all the elements 0, 1, 3, 4, 9, 10, 12, 13 are essential,
due to Lemma 1. This result verifies Lemma 3.

V. CONCLUDING REMARKS

This paper considered symmetric and maximally economic
sparse arrays with large hole-free difference coarrays. For

most of the known sparse arrays, at least one of these three
properties is not true. However, Cantor arrays satisfy all
these properties. Furthermore, the sensor location in a Cantor
array can be recursively specified. We proved these, and also
provided closed form expressions for the weight function of
the Cantor array. One limitation in Cantor arrays is that the
number of sensors N is required to be a power of two. Their
difference coarray has size N log2 3 ≈ N1.585.

Future research will be directed toward other array ge-
ometries that satisfy Criteria 1 to 4 simultaneously, with
more general array sizes than powers of two. Another future
direction is to study the essentialness property for arbitrary
array configurations.

APPENDIX A
PROOF OF LEMMA 2

The weight function wr(m) can be expressed as

wr(m) =
∣∣{(n1, n2) ∈ S2

r : n1 − n2 = m
}∣∣

=
∣∣{(n1, n2) ∈ S2

r−1 : n1 − n2 = m
}∣∣

+
∣∣{(n1, n2) ∈ T2

r−1 : n1 − n2 = m
}∣∣

+ |{(n1, n2) ∈ Sr−1 × Tr−1 : n1 − n2 = m}|
+ |{(n1, n2) ∈ Tr−1 × Sr−1 : n1 − n2 = m}| , (6)

which is due to Sr = Sr−1 ∪ Tr−1 in Definition 4. Since
every element in Tr−1 can be expressed as n′+Dr−1, where
n′ ∈ Sr−1, (6) can be written as

wr(m) =
∣∣{(n1, n2) ∈ S2

r−1 : n1 − n2 = m
}∣∣

+
∣∣{(n′1, n

′
2) ∈ S2

r−1 : n′1 − n′2 = m
}∣∣

+
∣∣{(n1, n

′
2) ∈ S2

r−1 : n1 − n′2 = m+Dr−1

}∣∣
+
∣∣{(n′1, n2) ∈ S2

r−1 : n′1 − n2 = m−Dr−1

}∣∣
= 2wr−1(m) + wr−1(m+Dr−1)

+ wr−1(m−Dr−1). (7)

Since the aperture of the Cantor array with parameter r− 1 is
Ar−1, we have, by definition, wr−1(m) = 0 if |m| > Ar−1.
Hence, (7) can be simplified as (4).

APPENDIX B
PROOF OF LEMMA 3

Let the Cantor array with parameter r be denoted by
Sr = {s1, s2, . . . , sN}, where 0 = s1 < s2 < · · · < sN and
N = 2r. We will first show that the weight function satisfies
wr(sN+1−k − sk) = 1 for k = 1, 2, . . . , N .

First, if r = 0, then S0 = {0} and w0(0) = 1, which holds
trivially. Assume wr(sN+1−k − sk) = 1 holds true for Sr.
Then the sensor locations for Sr+1 are given by

Sr+1 = {s1, s2, . . . , sN , s1 +Dr, s2 +Dr, . . . , sN +Dr}.

It can be shown that sN < s1 +Dr < s2 +Dr < · · · < sN +
Dr. Due to Lemma 2, the weight functions for Sr+1 satisfy
wr+1((sN +Dr)− s1) = wr(sN − s1) = 1. Similarly, we can
show that wr+1((sN+1−k+Dr)−sk) = 1 for k = 2, 3, . . . , N .
This means the same result holds true for Sr+1.

Next, based on Lemma 1 and the first part of the proof, we
have sk and sN+1−k for k = 1, 2, . . . , N are both essential,
which proves this lemma.
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