Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization

Chun-Lin Liu¹ P. P. Vaidyanathan² Piya Pal³

^{1,2}Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, cl.liu@caltech.edu¹, ppvnath@systems.caltech.edu²

> ³Dept. of Electrical and Computer Engineering University of Maryland, College Park ppal@umd.edu

ISCAS 2016

- 1 Introduction (DOA, Coprime Arrays, Spatial Smoothing MUSIC)
- 2 Coarray Interpolation via Nuclear Norm Minimization
- 3 Numerical Examples

1 Introduction (DOA, Coprime Arrays, Spatial Smoothing MUSIC)

- 2 Coarray Interpolation via Nuclear Norm Minimization
- 3 Numerical Examples

Direction-of-arrival (DOA) estimation¹

¹Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

ULA and sparse arrays

ULA (not sparse)

- Identify at most N 1 uncorrelated sources, given N sensors.¹
- Can only find fewer sources than sensors.

Sparse arrays

- Minimum redundancy arrays²
- 2 Nested arrays³
- Coprime arrays⁴
- 4 Super nested arrays⁵
- Identify O(N²) uncorrelated sources with O(N) physical sensors.
- More sources than sensors!

Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

²Moffet, IEEE Trans. Antennas Propag., 1968.

³Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010.

⁴Vaidyanathan and Pal, IEEE Trans. Signal Proc., 2011.

⁵Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

Coprime arrays¹

The coprime array with (M, N) = 1 is the union of

1 an N-element ULA with spacing $M\lambda/2$ and

2 a 2*M*-element ULA with spacing $N\lambda/2$.

Physical array §
$$(M = 3, N = 4)$$
: $\bigcup_{0}^{\mathsf{ULA}} (1)$ $\bigcup_{1}^{\mathsf{ULA}} (2)$
 $\bigcup_{0}^{\mathsf{ULA}} (2)$ $\bigcup_{1}^{\mathsf{ULA}} (2)$

¹Vaidyanathan and Pal, *IEEE Trans. Signal Proc.*, 2011.

The spatial smoothing MUSIC Algorithm¹

1 Sample covariance matrix: $\widetilde{\mathbf{R}}_{\mathbb{S}} = \frac{1}{K} \sum_{k=1}^{K} \widetilde{\mathbf{x}}_{\mathbb{S}}(k) \widetilde{\mathbf{x}}_{\mathbb{S}}^{H}(k).$

2 Sample autocorrelation function on the difference coarray: $\widetilde{\mathbf{x}}_{\mathbb{D}}.$

Bermitian Toeplitz matrix $\widetilde{\mathbf{R}}$ (indefinite matrix).

$$\widetilde{\mathbf{R}} = \begin{bmatrix} \langle \widetilde{\mathbf{x}}_{U} \rangle_{0} & \langle \widetilde{\mathbf{x}}_{U} \rangle_{-1} & \dots & \langle \widetilde{\mathbf{x}}_{U} \rangle_{-14} \\ \langle \widetilde{\mathbf{x}}_{U} \rangle_{1} & \langle \widetilde{\mathbf{x}}_{U} \rangle_{0} & \dots & \langle \widetilde{\mathbf{x}}_{U} \rangle_{-13} \\ \vdots & \vdots & \ddots & \vdots \\ \langle \widetilde{\mathbf{x}}_{U} \rangle_{14} & \langle \widetilde{\mathbf{x}}_{U} \rangle_{13} & \dots & \langle \widetilde{\mathbf{x}}_{U} \rangle_{0} \end{bmatrix}$$

4 MUSIC on $\widetilde{\mathbf{R}}$ resolves $(|\mathbb{U}| - 1)/2 = O(N^2)$ uncorrelated sources.

¹Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010; Liu and Vaidyanathan, IEEE Signal Proc. Letter, 2015.

Introduction (DOA, Coprime Arrays, Spatial Smoothing MUSIC)

2 Coarray Interpolation via Nuclear Norm Minimization

3 Numerical Examples

Why coarray interpolation?

Previous work

- **1** Spatial smoothing MUSIC¹: No coarray interpolation.
- 2 Positive-definite Toeplitz matrix completion²: Not always feasible.
- <u>3</u> Coarray interpolation (ICA-AI)³: Non-convex optimization.
- 4 Sparse support recovery techniques⁴: Predefined dense grid and parameters.
- 5 Gridless DOA estimator via low-rank recovery⁵: Not used for interpolation, but for denoising.

¹Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010; Liu and Vaidyanathan, IEEE Signal Proc. Letter, 2015.

²Abramovich, Spencer, and Gorokhov, IEEE Trans. Signal Proc., 1999.

³ Friedlander and Weiss, *IEEE Trans. Aero. Elec. Sys.*, 1992; Tuncer, Yasar, and Friedlander, *Radio Science*, 2007.

⁴Zhang, Amin, and Himed, IEEE ICASSP, 2013; Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2015;

⁵ Pal and Vaidyanathan, IEEE Signal Proc. Letter, 2014.

The proposed method (via nuclear norm minimization)

$$\begin{split} \widetilde{\mathbf{R}}_{\mathbb{V}}^{\star} &= \mathop{\arg\min}_{\widetilde{\mathbf{R}}_{\mathbb{V}} \in \mathbb{C}^{|\mathbb{V}^{+}| \times |\mathbb{V}^{+}|}} \|\widetilde{\mathbf{R}}_{\mathbb{V}}\|_{*} \quad \text{s. t.} \\ \widetilde{\mathbf{R}}_{\mathbb{V}} &= \widetilde{\mathbf{R}}_{\mathbb{V}}^{H}, \\ \langle \widetilde{\mathbf{R}}_{\mathbb{V}} \rangle_{n_{1},n_{2}} &= \langle \widetilde{\mathbf{x}}_{\mathbb{D}} \rangle_{n_{1}-n_{2}}, \\ n_{1}, n_{2} \in \mathbb{V}^{+} = \{n \mid n \in \mathbb{V}, n \geq 0\}. \end{split}$$

- $\mathbf{R}_{\mathbb{V}}$ has a <u>low-rank structure</u> for sufficient number of snapshots. The <u>nuclear norm</u> $\|\cdot\|_*$ (sum of singular values) is a convex relaxation of the matrix rank.
- $\widetilde{\mathbf{R}}_{\mathbb{V}}$ is <u>Hermitian</u>.
- $\widetilde{\mathbf{R}}_{\mathbb{V}}$ is a <u>Toeplitz</u> matrix with some known entries.

Advantages over the previous work

- 1 All the information is used.
- 2 Gridless.
- 3 Always feasible, even though $\widetilde{\mathbf{R}}_{\mathbb{V}}^{\star}$ can be indefinite.
- 4 Convex program.
- It is possible to resolve beyond the limit of U.

Coarray interpolation

 $\widetilde{\mathbf{R}}_{\mathbb{V}}^{\star} = \mathop{\arg\min}_{\widetilde{\mathbf{R}}_{\mathbb{V}} \in \mathbb{C}^{|\mathbb{V}^+| \times |\mathbb{V}^+|}} \| \widetilde{\mathbf{R}}_{\mathbb{V}} \|_{*}$

subject to

$$\widetilde{\mathbf{R}}_{\mathbb{V}} = \widetilde{\mathbf{R}}_{\mathbb{V}}^{H},$$
$$\langle \widetilde{\mathbf{R}}_{\mathbb{V}} \rangle_{n_1, n_2} = \langle \widetilde{\mathbf{x}}_{\mathbb{D}} \rangle_{n_1 - n_2}.$$

MUSIC

ŀ

$$\begin{split} \widetilde{\mathbf{R}}_{\mathbb{V}}^{\star} &= \widetilde{\mathbf{U}} \mathbf{\Lambda} \widetilde{\mathbf{U}}^{H}, \\ \widetilde{\mathbf{U}} &= \begin{bmatrix} \widetilde{\mathbf{U}}_{s} & \widetilde{\mathbf{U}}_{n} \end{bmatrix}, \\ \mathcal{P}_{\text{MUSIC}}(\bar{\theta}) &= \frac{1}{\left\| \widetilde{\mathbf{U}}_{n}^{H} \mathbf{v}_{\mathbb{V}^{+}}(\bar{\theta}) \right\|_{2}^{2}} \end{split}$$

Introduction (DOA, Coprime Arrays, Spatial Smoothing MUSIC)

2 Coarray Interpolation via Nuclear Norm Minimization

3 Numerical Examples

Simulation parameters

A coprime array with M = 3 and N = 5: (10 sensors)

$$\begin{split} \mathbb{S} &= \{0, 3, 5, 6, 9, 10, 12, 15, 20, 25\}, \quad |\mathbb{S}| = 10, \qquad |\mathbb{S}| - 1 = 9, \\ \mathbb{D} &= \{-25, -22, -20, -19, \\ &- 17, \dots, 17, 19, 20, 22, 25\}, \qquad |\mathbb{D}| = 43, \quad (|\mathbb{D}| - 1)/2 = 21, \\ \mathbb{U} &= \{-17, \dots, 17\}, \qquad |\mathbb{U}| = 35, \quad (|\mathbb{U}| - 1)/2 = 17, \\ \mathbb{V} &= \{-25, \dots, 25\}, \qquad |\mathbb{V}| = 51. \end{split}$$

Simulation parameters (Cont.)

- 1 The maximum number of resolvable uncorrelated sources:
 - using U: 17,
 - using D: 21.
- 2 Equal-power uncorrelated sources.
- 3 0 dB SNR and 500 snapshots.
- 4 Root-mean-squared error:

$$E = \sqrt{\frac{1}{D}\sum_{i=1}^{D} \left(\widehat{\theta}_{i} - \overline{\theta}_{i}\right)^{2}},$$

where

• $\{\hat{\bar{\theta}}_i\}_{i=1}^D$ is the estimated normalized DOA, and • $\{\bar{\theta}_i\}_{i=1}^D$ is the true normalized DOA.

Example 1: Two closely spaced sources (10 sensors)

1-5 See page 10 for all the references

Example 2: D = 19 sources (10 sensors)

Spline (E = 0.017665)

Liu et al.

Coprime Coarray Interpolation

SCAS 2016 17 / 19

Introduction (DOA, Coprime Arrays, Spatial Smoothing MUSIC)

- 2 Coarray Interpolation via Nuclear Norm Minimization
- 3 Numerical Examples

Concluding remarks

- Coarray interpolation via nuclear norm minimization:
 - The correlation information on the difference coarray is fully utilized.
 - The estimation error is reduced.
 - More sources than $(|\mathbb{U}| 1)/2$ (the limit of SS MUSIC using $\widetilde{\mathbf{x}}_{\mathbb{U}}$) can be resolved.
- In the future, it will be interesting to incorporate the matrix denoising idea into the interpolation approach.

Thank you!