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Abstract—Coprime arrays, consisting of two uniform linear
arrays whose inter-element separations are coprime, can resolve
O(MN) sources using only O(M +N) sensors. However, holes
in the coarray prevent us from using the full coarray in the
MUSIC algorithm for DOA estimation. Through interpolation, it
may be possible to use the remaining elements of the coarray
to increase the degrees of freedom beyond what is captured
in the contiguous ULA section in the coarray. Techniques like
positive definite Toeplitz completion, array interpolation, and
sparse recovery, manage to include all the information in the
coarray, but they demand extra fine-tuned parameters and have
individual drawbacks. In this paper, a simple and tractable
convex framework via nuclear norm minimization is presented.
This approach has no extra tuning parameters and overcomes
several undesired issues of other techniques. Numerical examples
indicate that, in many instances, the proposed method not only
increases the estimation accuracy but also distinguishes more
sources than other methods.1

Index Terms—Coprime sensor arrays, DOA estimation, nu-
clear norm, interpolation.

I. INTRODUCTION

COPRIME arrays have recently received considerable at-
tention in direction-of-arrival (DOA) estimation problems

[1]–[5]. Their major advantage is that O(MN) sources can be
identified using only O(M + N) physical sensors, where M
and N are a coprime pair of positive integers. Moreover, the
closed-form sensor locations are determined simply by two
uniform linear arrays (ULAs), whose sensor separations are
Mλ/2 and Nλ/2, respectively. Here λ is the wavelength of
the incoming signal.

For sparse arrays such as coprime and nested arrays, the
coarray MUSIC algorithm is used to estimated DOA [1], [5],
[6]. When there are holes in the coarray (as in the case of
coprime arrays), techniques such as positive definite Toeplitz
completion [7], and array interpolation [8], have been proposed
in the past. However, they require extra tuning parameters to
work properly. A different approach to include full coarray
information is to use convex sparse recovery programs like `1-
minimization or LASSO [9]. But this requires discretization
of parameter space into a dense grid, and does not work well
for off grid targets.

In this paper, the missing samples or holes are interpolated
by nuclear norm minimization which is associated with [10],
[11]. This method is not only computationally tractable but
also free from predefined dense grids, positive definite require-
ments, and extra tuning parameters, in comparison to [7]–[9].
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Note that our work can be regarded as a matrix completion
problem, which aims to recover a matrix based on several
known entries [10], [12], [13]. The main difference between
our work and [10], [12], [13] is as follows: In this paper, the
locations of the known entries are deterministic and related to
coprime arrays. By contrast, it is assumed in [10], [12], [13]
that the known entries are randomly selected.

Section II reviews sparse array processing. In Section III, a
novel coarray interpolation technique is proposed via nuclear
norm minimization. Section IV differentiates the proposed
approach from several related work [5], [7]–[9], [11]. Section
V presents some examples, showing that the proposed method
can improve the estimation accuracy and resolve more sources
than [5], [7]–[9], [14].

II. PRELIMINARIES

Assume that D monochromatic and uncorrelated sources
impinge on the sensors, located at nd, where n belongs to an
integer set S, d = λ/2 is the inter-element spacing, and λ is
the wavelength. For coprime arrays, the set S is given by

{0,M, . . . , (N − 1)M,N, 2N, . . . , (2M − 1)N}, (1)

where M and N are a coprime pair of positive integers. The
sensor outputs can be modeled as

xS =

D∑
i=1

AivS(θ̄i) + nS. (2)

Here Ai and θ̄i denote the amplitude and the normalized
DOA of the ith source. The normalized DOA is defined as
θ̄ = (d/λ) sin θ, where θ ∈ [−π/2, π/2] is the DOA. The
steering vector vS(θ̄) satisfies vS(θ̄) = [ej2πθ̄n]n∈S. nS is the
noise term. It is assumed that sources and noise are zero-mean
and uncorrelated with each other. Namely, E[A∗iAj ] = σ2

i δi,j ,
E[A∗inS] = 0, and E[nSn

H
S ] = σ2I. σ2

i is the power of the ith
source, σ2 is the noise power, and δp,q is the Kronecker delta.

According to (2), the covariance matrix of xS becomes

RS =

D∑
i=1

σ2
i vS(θ̄i)v

H
S (θ̄i) + σ2I. (3)

Reshaping (3) yields the autocorrelation vector xD:

xD =

D∑
i=1

σ2
i vD(θ̄i) + σ2e0, (4)

where 〈e0〉n = δn,0, and 〈·〉 is the bracket notation, as defined
in [15]. D is the (difference) coarray of S, defined as



Definition 1 (D, difference coarray). For a sparse array
specified by an integer set S, its difference coarray D is defined
as D = {n1 − n2 | n1, n2 ∈ S}.

The autocorrelation vector xD (4), sharing similar expres-
sions as (2), can be regarded as sensor outputs on D. If D
contains a long contiguous ULA segment, which will be de-
noted by the set U in Definition 2, then DOAs can be estimated
via coarray MUSIC on the autocorrelation evaluated at U [5].
This approach ensures that for coprime arrays, coarray MUSIC
can resolve O(|U|) = O(|S|2) uncorrelated sources using |S|
physical sensors [5]. The following definitions will be useful:

Definition 2 (U). Let S denote a sparse array and D be its
difference coarray. The maximum central contiguous ULA seg-
ment in D is U = {m | {−|m|, . . . ,−1, 0, 1, . . . , |m|} ⊆ D}.
Definition 3 (V). Let S denote a sparse array and D be its
difference coarray. The shortest ULA containing D is defined
as the integer set V = {m | min(D) ≤ m ≤ max(D)}.

The autocorrelations of sensor output signal evaluated at
lags defined by D, U, and V are denoted by xD, xU, and xV,
respectively. The degree of freedom (DOF) is the cardinality
of D and the uniform degree of freedom (uniform DOF) is
the cardinality of U. Coarray MUSIC can exploit the uniform
DOF but not the full DOF.

Example 1. As an example, if S = {0, 1, 4}, then

D = {−4,−3,−1, 0, 1, 3, 4}, U = {−1, 0, 1},
V = {−4,−3,−2,−1, 0, 1, 2, 3, 4}.

It is evident that U ⊆ D ⊆ V. The DOF and the uni-
form DOF are 7 and 3, respectively. Besides, if xV =
[1, 2, 3, 4, 5, 4, 3, 2, 1]T , then xD = [1, 2, 4, 5, 4, 2, 1]T , and
xU = [4, 5, 4]T .

In the finite snapshot setup, let x̃S(k) for k = 1, . . . ,K
be K realizations of (2). The covariance matrix of xS can
be estimated by R̃S =

∑K
k=1 x̃S(k)x̃HS (k)/K, from which

the finite snapshot autocorrelation vector on U, x̃U, can be
evaluated as in Definition 3 of [15]. We construct a Hermitian
Toeplitz matrix R̃U satisfying

〈R̃U〉n1,n2
= 〈x̃U〉n1−n2

, R̃U ∈ C|U
+|×|U+|, (5)

where n1, n2 ∈ U+ = {n | n ∈ U, n ≥ 0}. It was shown in
[15] that, if the eigenspace is partitioned by the absolute values
of the eigenvalues, MUSIC on R̃U is the same as MUSIC on
the spatially smoothed matrix as in [5].

III. COARRAY INTERPOLATION USING NUCLEAR NORM
MINIMIZATION

In traditional coarray MUSIC including [5] and [15], that
part of correlation information in D which is not also in U is
not used because, as seen from (5), only U is involved. If the
remaining correlation lags (which are not a part of U) are also
utilized in MUSIC via interpolation, the estimation error can
be reduced and more sources could be identified, compared to
[5], [15].

First, the DOF and the uniform DOF for coprime arrays are
characterized by the following:

Lemma 1. The cardinalities of S, D, U, and V for coprime
arrays, as defined in (1), are given by

|S| = N + 2M − 1, |D| = 3MN +M −N,
|U| = 2MN + 2M − 1, |V| = 4MN − 2N + 1.

Proof: The cardinality of S is trivial under the definition
of coprime arrays (1). |D| and |U| can be obtained from the
coprime array with compressed inter-element spacing (CACIS)
in Table I of [2], by substituting M,M̆ of [2] with 2M,M
of this paper. The maximum and minimum elements in V are
(2M −1)N and −(2M −1)N , respectively. Therefore, |V| =
2(2M − 1)N + 1 = 4MN − 2N + 1.

The uniform DOF F , determines the maximum number of
detectable sources by using the algorithm in [2], [5], [15]:

(F − 1)/2 = MN +M − 1 = O(MN). (6)

Next, considering the cardinality of the set D\U (those in D but
not in U), we obtain |D|− |U| = (M −1)(N −1) = O(MN).
This is the number of lost freedoms in coarray MUSIC, which
is huge for large M and N [5], [15].

To apply coarray MUSIC with all the correlation informa-
tion in D, we will interpolate x̃D on the non-uniform grid D,
to x̃V on the uniform grid V. But, simple interpolations like
spline interpolations [14] to construct x̃V from x̃D do not work
well. It is because x̃D originates from autocorrelation functions
that have certain structures (4). One structure is that both
x̃U and x̃V are Hermitian symmetric and they can generate
Toeplitz matrices R̃U and R̃V, respectively. Another structure
is that R̃U and R̃V own low-rank terms, related to the signal
components (Item 4 of Section IV in [15]).

The recovery of missing correlation information in R̃V
can be formulated as a nuclear norm minimization problem.
This is conceptually equivalent to producing the interpolated
correlation R̃V from the information contained in R̃D. It was
shown in [10], [12], [13] that under certain conditions, nuclear
norm is a good convex surrogate for matrix rank (which is non-
convex). Nuclear norm minimization can be solved efficiently
by semidefinite programming. The interpolation problem in
our application is as follows:

(P1) : R̃?
V = arg min

R̃V∈C|V+|×|V+|
‖R̃V‖∗ s.t. (7)

R̃V = R̃H
V , (8)

〈R̃V〉n1,n2 = 〈x̃D〉n1−n2 , (9)

where ‖·‖∗ denotes the nuclear norm of a matrix and (9) holds
true for all n1, n2 ∈ V+ = {n | n ∈ V, n ≥ 0}, and n1−n2 ∈
D. According to [10], nuclear norm minimization (7) favors
low-rank solutions. The known correlation information on D,
x̃D, is fully included in a Hermitian Toeplitz matrix R̃V as in
(8) and (9). The optimal solution to (P1), R̃?

V, contains the
interpolated autocorrelation, and can be utilized in computing
the coarray MUSIC spectrum readily [15].

Even though (P1) deals with the set V, coarray MUSIC on
R̃?

V cannot always achieve the maximum number of identifi-
able sources of V, which is (|V| − 1)/2 = 2MN − N . It is
because the actual freedom is governed by the non-uniform



grid D, as specified in (P1). Coarray interpolation uniquely
maps x̃D to x̃V, which is compatible with coarray MUSIC.
This step does not increase the degrees of freedom so that |V|
freedoms are not achievable.

IV. RELATION TO OTHER WORK

The spatial smoothing MUSIC (SS-MUSIC) [5] combines
spatial smoothing with the MUSIC algorithm for xU. (P1)
improves SS-MUSIC in two ways. First, the spatial smoothing
step is avoided so that the overall complexity decreases [15].
Second, (P1) includes the information outside U so that it is
likely that (P1) resolves more sources than SS-MUSIC.

The positive-definite Toeplitz matrix completion [7] poses
a log det maximization problem (Q1) on a positive definite
Toeplitz matrix T, in order to construct x̃V from x̃D. In fact,
T shares the same formulation as R̃V in (9). However, positive
definiteness is indispensable to real-valued log det functions
[7]. Sometimes, for finite snapshots, positive definiteness
makes (Q1) infeasible, so extra manipulations, such as finding
the minimum deflective point or adding diagonal loading to T,
are vital [7]. On the contrary, the proposed method (P1) works
even for indefinite R̃V since the nuclear norm is well-defined
and real-valued for any matrix. Furthermore, even if R̃V is
indefinite, Theorem 1 and Corollary 1 in [15] guarantee that
the MUSIC spectrum can always be defined from R̃V.

Tuncer et al. adapted array interpolation in the coarray
to improve DOA estimation performance [8]. Their method
jointly updates DOAs and the interpolation matrix with a
recursive formula. However, this approach is non-convex, and
many parameters, such as the signal power, the noise power,
interpolation sectors, and the number of iterations, need to be
tuned. By contrast, the convex problem (P1) can be simply
solved without knowledge of all these system parameters.

Sparse support recovery techniques can also be used in the
coarray domain for DOA estimation. Thus the approach in [9]
discretizes potential DOAs into a dense grid and emphasizes
sparse solutions via `1-minimization or LASSO. But the
performance depends on the dense grid. If targets are off-
grid, the solution might not be sparse, yielding inaccurate
DOA estimators. In this paper, we simply solve (P1) which
yields low-rank solutions and DOAs are estimated through the
MUSIC algorithm, which is free from off-grid issues.

A gridless DOA estimator via low-rank recovery is reported
in [11], and considers nuclear norm minimization. As a
comparison, (M1) in [11] is summarized as follows:

(M1) : min
R
‖R‖∗ s.t. ‖Psmooth(R̂yy)−R‖F ≤ ε. (10)

However, (P1) is distinct from (M1):
1) (M1) uses nested arrays, which have hole-free coarrays,

so array interpolation is not required. Besides, the purpose
of (M1) is denoising, as characterized by ε. On the other
hand, (P1) considers coprime arrays, which have holes in
the coarray. The aim of (P1) is array interpolation so that
equailties are enforced in (9).

2) In (M1), the spatial smoothing operator Psmooth acts
on the covariance matrix R̂yy . According to [6], the spatially
smoothed matrix R̃ss is evaluated first and Psmooth(R̂yy)

is the positive semidefinite squared root of R̃ss. In (P1),

R̃V avoids the spatial smoothing step and can be established
readily from x̃D [15].

3) R̃V admits simple linear constraints (9). If (P1) is
formulated in terms of the spatially smoothed matrix R̃ss, the
linear constraints (9) become nonlinear equality constraints
since R̃ss = R̃2

V [5], [6], [15]. Hence the overall problem is
non-convex with respect to R̃ss.

4) The matrix R in (M1) might not be Hermitian so that,
later on, a MUSIC-like spectrum is defined by the singular
value decomposition of R [11]. But, R̃V in (P1) is restricted
to Hermitian matrices, which not only accelerates the convex
solvers but also guarantees that the eigen-decomposition re-
mains applicable to MUSIC.

V. NUMERICAL EXAMPLES

In this section, a coprime array with M = 3 and N = 5
is considered. 10 sensors are located at 0, 3, 5, 6, 9, 10, 12,
15, 20, and 25. Lemma 1 suggests that |S| = 10, |D| = 43,
|U| = 35, and |V| = 51. The maximum number of identifiable
sources using coarray MUSIC on x̃U is 17, as in (6).

The first example in Fig. 1 demonstrates one instance
where our approach (P1) exhibits the best performance.
Two uncorrelated and equal-power sources are located at
θ̄1 = −0.0045 and θ̄2 = 0.0045. The SNR is 0 dB and
there are 500 snapshots to estimate correlations using sample
averages. For the same autocorrelation vector x̃D, six different
DOA estimation methods are used: spatial smoothing MUSIC
(SS-MUSIC) [5], coarray LASSO (Co-LASSO) (15) in [9],
spline interpolation on x̃D [14], iterative CA-AI (ICA-AI) [8],
positive definite Toeplitz completion [7], and the proposed
method (i.e. solving (P1)). For Co-LASSO (Eq. (15) in [9]),
we choose h = 0.2. The MUSIC spectrum is plotted in Fig.
1 for all methods. For Co-LASSO, the solution x (with grid
size 1024) is plotted in place of the MUSIC spectrum. The
ICA-AI plot uses 10 iterations. It can be inferred from Fig.
1 that, almost every method, except Co-LASSO, exhibits two
peaks around the true DOAs. Co-LASSO has relatively large
error, since targets are off-grid. The root-mean-squared error
(RMSE) is defined as E = (

∑D
i=1 (ˆ̄θi − θ̄i)2/D)1/2, where

ˆ̄θi denotes the estimated normalized DOA of the ith source
and θ̄i is the true normalized DOA. It can be seen that our
proposed method indeed decreases DOA estimation error in
this case.

Fig. 2 shows another example with D = 19 (which exceeds
the limit for SS-MUSIC, which is 17 from (6)). The sources
are assumed uncorrelated with equal power. These sources
are located at θ̄i = −0.4 + 0.8(i − 1)/18 for 1 ≤ i ≤ 19.
The remaining parameters are the same as those in Fig. 1.
In this setting, positive definite Toeplitz completion [7] is
unable to produce a MUSIC spectrum since the associated
optimization problem is infeasible. In Co-LASSO and ICA-
AI, false peaks are located around θ̄ = −0.5 and θ̄ = 0.45,
respectively. Spline interpolation misses the target around
θ̄ = 0.3. The proposed approach is able to generate a clean
MUSIC spectrum without false peaks or missing targets, for
this particular instance. Our proposed method is therefore very
promising for the task of identifying more sources than what
is done by SS-MUSIC (Eq. (6)).
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Fig. 1. The spectrum P (θ̄) for various interpolation methods. There are D = 2 uncorrelated and equal-power sources with normalized DOAs θ̄1 = −0.0045,
θ̄2 = 0.0045. The SNR is 0 dB and there are 500 snapshots.
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Fig. 2. The spectrum P (θ̄) for various interpolation methods. The number of sources D is 19, exceeding the limit achievable with U (Eq. (6)) which is 17.
These sources are uncorrelated, equal-power, and located at θ̄i = −0.4 + 0.8(i− 1)/18 for 1 ≤ i ≤ 19. The SNR is 0 dB and there are 500 snapshots.

VI. CONCLUDING REMARKS

A novel coarray interpolation using nuclear norm minimiza-
tion for coprime arrays was proposed. For many instances,
our method is capable of identifying more sources than that
in [5]. It also lowers the estimation error in comparison to
some related work [5], [7]–[9], [14]. In the future, it will be
interesting to incorporate the matrix denoising idea into the
interpolation approach.
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