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ABSTRACT

In this paper, the general form of the two-dimensional Fourier
transform (2D FT) eigenfunctions is discussed. It is obtained
from the linear combination of the 2D separable Hermite
Gaussian functions (SHGFs). For example, the rotated Her-
mite Gaussian functions (RHGFs) for the rotated coordinate
and the Laguerre Gaussian functions (LGFs) for the polar co-
ordinate are two special cases of the general form. With the
aid of the general form, we can achieve these 2D functions
with perfect orthogonality. Finding the combination coeffi-
cients is equivalent to the multinomial expansion problem.
Therefore, we can apply the fast Fourier transform and some
recurrence relations to the coefficients. The computation
cost is much less than the close-form coefficients, which is
associated with the Jacobi polynomials.

Index Terms— Two-Dimensional Discrete Fourier Trans-
forms, Eigenfunctions, Orthogonality, Fast Fourier Trans-
forms.

1. INTRODUCTION

For a 1D signal f(x) ∈ L2(R), the 1D FT is a transformation
from f(x) to F (u) and defined by

F (u) = F {f(x)} =
1√
2π

∫ ∞
−∞

f(x)e−juxdx. (1)

The eigenfunctions of (1) are the Hermite Gaussian functions
(HGFs),

hn(x) =
(
2nn!
√
π
)−1/2

Hn(x)e−x
2/2, (2)

whereHn(x) = (−1)nex
2

(d/dx)
n
e−x

2

is the Hermite poly-
nomial. Substituting (2) into (1) yields

F {hn(x)} = (−j)nhn(u). (3)

{hn(x)} forms a complete orthonormal basis set of L2(R).
The eigenfunctions and the eigenvalues are important to de-
fine the fractional Fourier transform [1].

The 2D FT, similar to the 1D FT, is defined by

F (u, v) = F {f(x, y)}

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j(ux+vy)dxdy. (4)

The eigenfunctions of (4) are not as simple as (2). There are
mainly three complete orthonormal basis sets: separable Her-
mite Gaussian functions (SHGFs), rotated Hermite Gaussian
functions (RHGFs) and Laguerre Gaussian functions (LGFs).

1.1. Separable Hermite Gaussian functions

The SHGFs are obtained by multiplying the HGFs in different
dimensions,

hm,n(x, y) = hm(x)hn(y). (5)

Substituting (5) into (4) gives us

F {hm,n(x, y)} = (−j)m+nhm,n(u, v). (6)

Because of the complete and orthonormal property of the
HGFs, {hm,n(x, y)} is also a complete orthonormal basis set
of L2(R2).

1.2. Rotated Hermite Gaussian functions

The RHGFs are also the eigenfunctions of the 2D FT because
of the rotation theorem [2],

F {f(x cosα+ y sinα,−x sinα+ y cosα)}
= F (u cosα+ v sinα,−u sinα+ v cosα), (7)

where α is the rotation angle in the counterclockwise direc-
tion. If we combine (6) and (7), we obtain

F {hm,n(α;x, y)} = (−j)m+nhm,n(α;u, v), (8)

where

hm,n(α;x, y) = hm,n(x cosα+ y sinα,−x sinα+ y cosα)
(9)

are the RHGFs. Note that the eigenvalues of the RHGFs are
the same as those of the SHGFs.



1.3. Laguerre Gaussian functions

For the circular symmetric signals, the LGFs lm,n(r, θ) are
the eigenfunctions of the 2D FT in the polar coordinate (r, θ),
which is known as the Hankel transform (HT). In [3], the
eigenfunctions of the HT are

lm,n(r, θ) = Np,lr
lLlp

(
r2
)
e−r

2/2e−jlθ, (10)

where p = min {m,n}, l = |m − n|, Np,l is the normaliza-
tion factor, and Lmn (·) is the associated Laguerre polynomial.
Substituting (10) into (4) gives us the eigenvalues, (−j)m+n.

There are other eigenfunctions instead of the above three
families. However, these functions are rare and they usually
do not form an orthonormal basis. Besides, the above three
sets of eigenfunctions form a complete and orthonormal ba-
sis, which means that any eigenfunction can be uniquely de-
termined from the basis. Hence, we focus ourselves on con-
structing the basis rather than the special cases.

2. THE GENERAL FORM OF THE
EIGENFUNCTIONS

The three types of functions form a complete and orthonormal
basis set relatively. Therefore, we can use all of the SHGFs
as basis and proper combination coefficients to synthesis the
RHGFs or the LGFs. It is observed that all solutions contain
two parts: the 2D Gaussian function and the particular poly-
nomial. As a result, we assume that the eigenfunctions are in
the form of

ψD(x, y) = PD(x, y)e−(x
2+y2)/2, (11)

where PD(x, y) is a two variable polynomial with degree D.
From the degree property of the Hermite polynomials, i.e.
deg(Hn(x)) = n, PD(x, y) can be expressed as

PD(x, y) =
∑

p+q≤D

cDp,q√
2p+qp!q!π

Hp(x)Hq(y). (12)

The coefficients cDp,q are unique once PD(x, y) is fixed. Then

ψD(x, y) =
∑

p+q≤D

cDp,qhp,q(x, y). (13)

Taking the 2D FT on both sides of (13) yields

F
{
ψD(x, y)

}
=

∑
p+q≤D

(−j)p+qcDp,qhp,q(u, v). (14)

Compare (13) with (14) and we obtain that the p and q must
satisfy

p+ q = D,D − 4, D − 8, . . . (15)

and p, q ≥ 0. The above result is explained in an intuitive way
as follows. The eigenfunctions satisfying (15) correspond to

the same eigenvalue. The linear combination of these bases is
still the eigenfunctions of the 2D FT.

Although the coefficients cDp,q can be arbitrarily chosen,
we also want the obtained eigenfunctions to be complete
and orthonormal. Assume that the two eigenfunctions are
ψD1 (x, y) and ψD

′

2 (x, y), which are specified by the coeffi-
cients cDp,q and dD

′

p,q , as in (13), respectively. The inner product
of the two eigenfunctions becomes〈

ψD1 (x, y), ψD
′

2 (x, y)
〉

=
∑
p,q

cDp,q

(
dD

′

p,q

)∗
, (16)

where (·)∗ denotes complex conjugation. To simplify (16),
we restrict p+q = D inψD1 (x, y) and p+q = D′ inψD

′

2 (x, y)
so that (13) can be revised as

ψD(x, y) =

D∑
p=0

cDp,D−php,D−p(x, y) (17)

and (16) becomes 0 if D 6= D′. For D = D′, there are D+ 1
terms in (16), which can be viewed as the inner product of
two (D+ 1)-dim vectors. (17) is considered to be the general
form of the 2D FT eigenfunctions.

It is possible to choose appropriate cDp,q and dDp,q to make
the coefficients orthonormal. One trivial solution is that

cDp,q = δ[p, q −D], dDp,q = δ[p− 1, q −D + 1]. (18)

The obtained solutions are two of the SHGFs. We further
conclude that Any (D + 1)-dim orthonormal vector set is the
possible solution of the coefficients cDp,q and dDp,q . The RHGFs
and LGFs are in the form of (13) with proper coefficients. To
have hm,n(α;x, y), the coefficients are [4]

cm,np,q (RHGF) =

√
p!q!

m!n!
(sinα)

m−p
(cosα)

n−p

P (m−p,n−p)
p (cos 2α) (19)

for p+ q = m+ n = D. P (α,β)
n (x) are the Jacobi polynomi-

als. In [5], the close-form coefficients of the LGFs are similar
to those of the RHGFs as long as the rotation matrix U is
modified into UZ. Another more elegant form comes from
the Laguerre Gaussian modes of the paraxial wave equation
[4, 6]. The π/4 RHGFs and LGFs are connected with a com-
plex factor jk in the coefficients.

The major advantage of the general form is the orthogo-
nality of the eigenfunctions. The above derivation is under
the assumption that the HGFs are continuous. If the discrete
HGFs, as the eigenvectors of the DFT, with perfect orthogo-
nality are used, the obtained discrete 2D signals are the eigen-
functions of the 2D DFT and they are orthonormal, using the
same coefficients cm,np,q .

The general form (17) combines hp,D−p(x, y). Note that
the sum of the subscripts is a constant. Following the same
step, we also find that this property is correct for higher di-
mensions. For instance, the 3D FT eigenfunctions are the lin-
ear combination of hp,q,r(x, y, z) with N = p+ q + r.



3. FFT ALGORITHM FOR THE COEFFICIENTS

The close-form combination coefficients, in (19), are not suit-
able for computation. To obtain a single cm,np,q , there are at
least p multiplications because the degree of the Jacobi poly-
nomial is p. For all cm,np,q , p = 0, 1, . . . ,m+ n, the number of
multiplications required is O

(
D2
)
, which can be reduced.

In [5], the combination coefficients cm,np,q are derived from
the definition of the Hermite 2D polynomials by

Hm,n(U ;x, y) = 2m+ne
− 1

4

(
∂2

∂x2 + ∂2

∂y2

)
(Uxxx+ Uxyy)

m
(Uyxx+ Uyyy)

n
, (20)

which is (3.4) in [5]. If we set {Uxx, Uxy, Uyx, Uyy} =
{cotα, sinα,− sinα, cosα} and multiply the Gaussian func-
tion, (20) becomes hm,n(α;x, y). By expanding the multino-
mial and some derivation, we have the coefficients associated
with the Jacobi polynomials, as shown in (19). From the point
of computing, expanding the multinomial (20) is faster than
evaluating (19) directly because the multinomial expansion
problem is equivalent to the discrete convolution. Assume
that the result of expansion is

(Uxxx+ Uxyy)
m

(Uyxx+ Uyyy)
n

=
∑
p,q

am,np,q x
pyq. (21)

Our goal is to get am,np,q from the left-hand side. if we set
x = e−j2π/(D+1) and y = 1, the right-hand side is exactly
the DFT while the left-hand side involves multiplication in
the DFT domain. Taking the inverse DFT yields

[Uxy, Uxx]
∗m ∗ [Uyy, Uyx]

∗n
=
[
am,n0,D , . . . a

m,n
D,0

]
, (22)

where ∗ denotes the convolution and (·)∗n = (·) ∗ ... ∗ (·) for
n times. We can use FFT algorithms to compute the left-hand
side of (22) and the results are the coefficients am,np,q . The final
coefficients cm,np,q is related to am,np,q by a normalization factor√
p!q!/(m!n!). Therefore, cm,np,q can be obtained faster with

the aid of the FFT algorithms.
The complexity of this fast algorithm is approximately

O((D + 1) log2(D + 1)). First, computing the DFT of
[Uxy, Uxx] and [Uyy, Uyx] takes about (D + 1) log2(D + 1)
complex multiplications if (D + 1)-point Cooley-Tukey FFT
algorithm is applied. Second, the power of m and n in the
frequency domain requires approximately (D + 1) log2(mn)
complex multiplications and the inverse DFT takes another
1
2 (D + 1) log2(D + 1) complex multiplications. Therefore,
the overall system complexity is O((D + 1) log2(D + 1)),
which outperforms the method for computing the Jacobi
polynomials in (19) directly.

This algorithm can be applied to the combination coeffi-
cients of the LGFs. In [5], the LGFs are closely related to
the RHGFs by introducing a complex matrix Z and modify-
ing the values Uxx, Uxy, Uyx, Uyy into complex values. The
other process remains.

Another advantage of this algorithm is that if we want to
obtain the coefficients of cm,np,q for all m,n, p, q, the results
can be obtained recursively. From (22), we have[
am,n0,D , . . . , a

m,n
D,0

]
∗ [Uxy, Uxx] =

[
am+1,n
0,D+1 , . . . , a

m+1,n
D+1,0

]
,[

am,n0,D , . . . , a
m,n
D,0

]
∗ [Uyy, Uyz] =

[
am,n+1
0,D+1 , . . . , a

m,n+1
D+1,0

]
.

The above recursive relation is useful when we want to im-
plement the whole set of the orthonormal functions.

4. EXPERIMENTAL RESULTS

In this section, some properties of the eigenfunctions are dis-
cussed and compared with the continuous-sampled functions.
The discrete 1D HGFs are computed with perfect orthogo-
nality [7]. We select the number of discrete sample in one
dimension to be N = 101 and the sampling interval ∆x =
∆y =

√
2π/N for simplicity.

In Table 1, the RHGF h8,3(π/3;x, y) and the LGF
l8,3(x, y) are shown in two methods. The continuous-sampled
functions are taken from (9) and (10) while the discrete
functions are obtained by our method. The latter really ap-
proximates the continuous function we want, in terms of the
magnitude and the phase. With the aid of the general form,
we do not have to re-sample and the sample points are fixed.

In Table 2, three of the 2D DFT eigenfunctions are listed
in our method. The eigenfunctions ψ(x, y), with magnitude
and phase, are shown in the first row while in the second row,
their Fourier transforms Fψ are given. Due to the eigenval-
ues, (−j)m+n, the magnitudes are invariant but there are con-
stant phase differences between ψ(x, y) and Fψ. Some mis-
matches in the phase information near the boundaries are due
to small magnitudes (below the order of 10−16), resulting in
inaccurate phase. The first one is h4,10(3π/4;x, y), whose
the phase difference is π, consisting with our simulation. For
l7,6(x, y), the phase difference is −π/2 theoretically. In our
simulation, the phase pattern rotates π/2 clockwise. The third
function is generated from the random complex coefficients
cDp,q with D = 12. The phase difference between ψ(x, y) and
Fψ should be perfectly zero, which is verified by our simu-
lation. The function seems very complicated, but it is still the
2D DFT eigenfunction.

5. CONCLUSION AND FUTURE WORK

In this paper, the general form of the eigenfunctions of the 2D
DFT was discussed. The three common 2D FT eigenfunc-
tions, SHGFs, RHGFs and LGFs, are all special cases of the
general form in (17), which can also be extended to higher di-
mensions. A fast algorithm utilizing the FFT algorithm, with
complexity O((D + 1) log2(D + 1)), was proposed. Based
on the discrete 1D HGFs and the coefficients, the 2D eigen-
functions are obtained and they are indeed the eigenfunctions
of the 2D DFT.



h8,3(π/3;x, y) l8,3(x, y)
Magnitude Phase Magnitude Phase

Cont.

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

Disc.

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

Table 1. The comparison between the continuous-sampled functions/discrete functions of h8,3(π/3;x, y) and l8,3(x, y).

h4,10(3π/4;x, y) l7,6(x, y) Random ψD=12(x, y)
Magnitude Phase Magnitude Phase Magnitude Phase

Eig.
Func.
ψ(x, y)

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

Fψ

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

Table 2. The comparison between the eigenfunctions and their Fourier transforms.

These eigenfunctions can be used to define the corre-
sponding transforms to analyze rotated or circular symmetric
objects. Besides, our method is free from interpolation and
ensures orthogonality. It is more suitable for discrete signals.
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