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Abstract—Coprime arrays offer degrees of freedom of O(MN)
given O(M +N) sensors, where M and N are coprime integers.
The performance of coprime arrays is based on coprime DFT
filter banks (coprime DFTFBs), which cascade an M -channel
DFTFB and an N -channel DFTFB to achieve MN -channel filter
banks. However, practical designs of coprime DFTFBs have not
been fully studied. In this paper, a systematic design is related
to IFIR filter designs, based on M , N , filter orders, and peak
ripples. Our design owns a parameter λ that provides tradeoffs
between passbands and stopbands. A design example for different
λ is also presented.1

I. INTRODUCTION

Coprime DFT filter banks (coprime DFTFBs), introduced in
[12], have applications in sensor array processing. Given two
integers M and N that are coprime, two uniform linear arrays
with interelement spacing Nλ/2 and Mλ/2, respectively, are
designed properly to achieve O(MN) degrees of freedom
from O(M + N) sensors. Furthermore, interferences and
physical coupling between sensors are reduced compared to
nested arrays [7]. The enhanced degree of freedom is based on
coprime DFTFBs, which divide the spectrum equally into MN
bands by statistically averaging the outputs of two uniform
linear arrays.

However, systematic design procedures for coprime
DFTFBs were not fully studied in [12]. The extended coprime
arrays with various window functions were considered in [1].
This problem is in essence a filter design problem. Given the
specifications of coprime DFTFBs, the impulse responses of
two DFTFBs are to be evaluated.

Similar design problems can be found in filter design litera-
ture as interpolated finite impulse response filters (IFIR filters)
[5], [9], [10]. IFIR filters decompose the desired filter response
into a sparse coefficient filter followed by an interpolation
filter. These filters are designed jointly to minimize the number
of multipliers while meeting the specification [4]. By the virtue
of low complexity, IFIR filters find useful applications in IFIR
radar [11], active beamforming [13], adaptive filtering [2], and
low power circuit design [6].

The goal of this paper is to design coprime DFTFBs so that
the performance of coprime arrays is fundamentally improved.
A systematic design procedure of coprime DFTFBs, inspired
by the design methods for IFIR filters, is presented. Since IFIR
filters are coprime DFTFBs with N = 1, design techniques
for IFIR filters can be extended to coprime DFTFBs. With
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given specifications, the Parks-McClellan filter design algo-
rithm is applied twice to obtain coprime DFTFBs. Practical
design issues, such as transition bandwidth and overlapping
between filters, are parametrized. These coprime DFTFBs with
better specifications faciliate a variety of applications in array
processing.

This paper is organized as follows. Coprime DFTFBs will
be reviewed briefly in Section II. The design parameters
are defined in Section III, where an additional parameter λ
controls the behavior in stopbands. In Section IV, optimization
problems regarding λ are proposed, relaxed, and solved in
closed-form expressions. Frequency responses of our coprime
DFTFB designs are simulated in Section V before concluding
remarks in Section VI.

II. REVIEW OF COPRIME DFT FILTER BANKS

Assume that M and N are positive coprime integers.
Consider two real coefficient FIR filters G(z) and H(z),

G (z) =

Ng∑
n=0

g(n)z−n, H (z) =

Nh∑
n=0

h(n)z−n,

where Ng and Nh are filter orders of G(z) and H(z),
respectively. Coprime DFTFBs are a set of MN filters defined
as

F`k (z) = G
(
zMW `

N

)
H
(
zNW k

M

)
,

where 0 ≤ ` ≤ N − 1, 0 ≤ k ≤ M − 1 and WN = e−j2π/N .
In [12], G(z) and H(z) are ideal lowpass filters

G
(
ej2πf

)
=

{
1 f ∈

(
− 1

2N ,
1

2N

)
,

0 otherwise,

H
(
ej2πf

)
=

{
1 f ∈

(
− 1

2M , 1
2M

)
,

0 otherwise,

where f denotes normalized frequencies. G
(
ej2πfM

)
and

H
(
ej2πfN

)
have exactly M , and N passbands, respectively.

Only one of the passbands overlaps, implying F`k
(
ej2πf

)
has

exactly one passband with bandwidth 1
MN . Assume that the

passband is centered around i
MN , where 0 ≤ i ≤ MN − 1.

Defining ` and k to be such that

` = i mod M, k = i mod N,

the coprime DFTFB F`k
(
ej2πf

)
is then

F`k
(
ej2πf

)
=

{
1 f ∈

(
i

MN −
1

2MN ,
i

MN + 1
2MN

)
,

0 otherwise.
(1)
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Fig. 1. An illustration of Coprime DFTFBs for M = 3 and N = 2. (Top)
Prototype filters G

(
ej2πf

)
and H

(
ej2πf

)
. (Middle) Magnitude responses

of sparse coefficient filters G
(
ej2πfM

)
and H

(
ej2πfN

)
. (Bottom) The first

filter (F00

(
ej2πf

)
= G

(
ej2πfM

)
H
(
ej2πfN

)
) in coprime DFTFBs.

The filter F00 (z) can be regarded as a generalization of IFIR
filters. Letting N = 1 in F00 (z) = G

(
zM
)
H
(
zN
)

leads to
IFIR filters exactly, if we view H(z) as the interpolation filter.
Besides, G(z) and H(z), as the model filters in IFIR filters,
have wider passbands compared to F00(z). The number of
multipliers in F00 (z) is reduced to Ng + Nh + 2, which is
similar to the low complexity of IFIR filters.

III. DESIGN FROM SPECIFICATION

The goal of coprime DFTFB design is to obtain g(n) and
h(n) so that (1) is well-approximated in the sense of peak
passband ripples ∆1 and peak stopband ripples ∆2. Provided
with coprime integers M , N , filter orders Ng , Nh, and peak
ripples ∆1, ∆2, we need to relate these parameters to the
specifications of G

(
ej2πf

)
and H

(
ej2πf

)
. Then the Parks-

McClellan filter design algorithm can be directly applied to
these specifications to obtain g(n) and h(n).

The concept of coprime DFTFB design is illustrated in Fig.
1. Two lowpass filters G

(
ej2πf

)
and H

(
ej2πf

)
are designed

with transition bandwidths M∆f and N∆f , respectively. The
ideal passbands are eroded by the finite transition band with
a factor λ ∈ [0, 1]. The corresponding sparse coefficient fil-
ters G

(
ej2πfM

)
and H

(
ej2πfN

)
narrow down the transition

bandwidth to ∆f but create unwanted image bands. According
to [12], the undesired bands will be cancelled out in the ideal
case because of coprimality of M and N . In practice, the
overlapping transition bands in G

(
ej2πfM

)
and H

(
ej2πfN

)
introduce some bumps in the stopband, as depicted in the

bottom of Fig. 1. These bumps might violate stopband ripple
constraints.

Next, the peak ripples for the filters G
(
ej2πf

)
, H

(
ej2πf

)
,

and F00

(
ej2πf

)
are related. Without loss of generality, the

peak passband ripples and the peak stopband ripples of
G
(
ej2πf

)
, H

(
ej2πf

)
are set to be δ1 and δ2, as illustrated in

the top plot of Fig. 1. The peak passband/stopband ripples
for F00

(
ej2πf

)
are defined as ∆1 and ∆2, respectively.

Since sparse coefficient filters do not modify the ripples,
∆1,∆2, δ1, δ2 are related by

1−∆1 = (1− δ1)
2
, ∆2 = (1 + δ1) δ2,

where the bumps are not considered in the above formulation.
Expressing δ1 and δ2 in terms of ∆1 and ∆2 yields

δ1 = 1−
√

1−∆1, δ2 =
∆2

2−
√

1−∆1

. (2)

If the given ripples ∆1 and ∆2 are relatively small compared
to unity, the peak ripples can be approximated by δ1 ≈ ∆1/2
and δ2 ≈ ∆2.

The transition bandwidths of G
(
ej2πf

)
and H

(
ej2πf

)
are

M∆f and N∆f , respectively. Since we know filter orders
can be estimated from transition bandwidths and peak ripples
by Bellanger’s formula [10, pp. 57] (Kaiser’s formula [10, pp.
57] will also work), ∆f can be lower-bounded by

∆f ≥
2 log10

(
1

10δ1δ2

)
3 min {MNg, NNh}

. (3)

Since Bellanger’s formula only provides an estimate for filter
orders, this lower bound does not guarantee that the resultant
G
(
ej2πf

)
and H

(
ej2πf

)
meet the specifications exactly. If

our design does not meet the specifications, increasing ∆f
will work.

To run McClellan filter design algorithm on G
(
ej2πf

)
and

H
(
ej2πf

)
, the passband/stopband edges need to be specified,

which are related to the parameter λ. As depicted in Fig. 1, λ
controls the amount of overlapping transition bands between
G
(
ej2πfM

)
and H

(
ej2πfN

)
as well as the level of bumps in

F`k
(
ej2πf

)
. In the next section, we will propose an optimiza-

tion problem over λ that meets the design specifications.

IV. PARAMETER λ SELECTION

The parameter λ offers tradeoffs between bandwidths of
the passband and the stopband. Consider the extreme cases
λ = 1 and λ = 0. If λ = 1, the bumps of F00

(
ej2πf

)
are

less than δ22 , which satisfies stop ripple constraints. However,
the passband width is minimized over all possible λ, which
rejects the components around f = 0.5/(MN). When λ = 0,
although the passband edge is maximized to be 0.5/(MN),
the bumps violate the stopband ripple constraints.

Our design goal is to limit the stopband ripples of
F00

(
ej2πf

)
to be always less than ∆2. Among all feasible

solutions, the one with maximal passband edge is desired. This



statement poses the following optimization problem:

λopt = min
λ

λ subject to
∣∣F00

(
ej2πf

)∣∣ ≤ ∆2,

f ∈
[

0.5

MN
+ (1− λ)∆f, 1− 0.5

MN
− (1− λ)∆f

]
, (4)

where ∆f is fixed.
However, there is no simple solver to (4) other than brute-

force search over all possible λ. The frequency response
F00

(
ej2πf

)
and the parameter λ need to be solved alterna-

tively. This procedure is not practical since a simple design
problem specifies λ before designing filters.

Instead of solving (4), the optimization problem can be
relaxed to approximated frequency responses F̂00

(
ej2πf

)
.

λ̂ = min
λ

λ subject to
∣∣∣F̂00

(
ej2πf

)∣∣∣ ≤ ∆2,

f ∈
[

0.5

MN
+ (1− λ)∆f, 1− 0.5

MN
− (1− λ)∆f

]
, (5)

where F̂00

(
ej2πf

)
might not be realizable in the FIR setting

but can be written as some simple closed-form functions. Cer-
tain choices of F̂00

(
ej2πf

)
even give closed-form expression

of λ̂. These λ̂ are simple to evaluate and close to λopt.
A fundamental question that might be raised here is the

conditions on the approximated frequency responses. The
only assumption in the paper is that the transition bands of
G
(
ef2πf

)
and H

(
ej2πf

)
are monotonically increasing or

decreasing. This is usually a valid assumption for the Parks-
McClellan filter design algorithm.

In the following discussion, linear functions and Q functions
approximating the transition bands and the minimizer to (5),
λ̂, are derived.

A. Linear functions

Fig. 1 illustrates a simplified model of the transition band of
G
(
ej2πfM

)
and H

(
ej2πfN

)
for M = 3 and N = 2. Within

the transition bands, which is around f = 5/(2MN) in Fig. 1,
the line segments joining the passband edges and the stopband
edges are

Ĝli (f) = δ2 − (1− δ1 − δ2)
f − 2.5

MN − (1− λ) ∆f

∆f
,

Ĥli (f) = δ2 + (1− δ1 − δ2)
f − 2.5

MN + (1− λ) ∆f

∆f
,

where f ∈ S =
[
2.5/(MN)− λ̃∆f, 2.5/(MN) + λ̃∆f

]
,

λ̃ = min (λ, 1− λ). Ĝli (f) and Ĥli (f) denote the linear ap-
proximation of

∣∣G (ej2πfM)∣∣ and
∣∣H (ej2πfN)∣∣, respectively.

Coprime DFTFBs over S are estimated as

F̂li (f) = Ĝli (f) Ĥli (f)

≤ 1

4

(
Ĝli (f) + Ĥli (f)

)2
= (δ2 + (1− δ1 − δ2) (1− λ))

2
, (6)

where the inequality is a direct result of AM-GM inequality
since Ĝli (f) and Ĥli (f) are positive over S. Setting the upper
bound in (6) less than or equal to the specification ∆2 gives

λ ≥ λ̂li ,
1− δ1 −

√
∆2

1− δ1 − δ2
. (7)

(7) indicates that, instead of setting λ = 1, we can choose
λ̂li to meet the stopband ripple constraints. Note that λ̂li is
less than 1 for small δ1 and δ2. As a numerical example,
the specifications M = 8, N = 5, Ng = 100, Nh = 160,
∆1 = 0.01, ∆2 = 0.001 give us δ1 ≈ 0.003, δ2 ≈ 0.001 and
λ̂li ≈ 0.969 < 1.

B. Q functions
Transition bands in actual design are more complicated

than linear functions. Empirically, the linear functions are
usually upper bounds of the actual transition band at most
frequencies in our design examples, implying λ̂li is still far
from the optimizer λopt in (4). We need a closed-form function
which 1) has the transition behavior in a particular region, 2)
approximates transition bands better, and 3) makes it easy to
compute the maximal value in closed-form expressions.
Q functions meet these properties. Assume that the transi-

tion bands are approximated by

ĜQ (f) = Q (a1f + b1) , ĤQ (f) = Q (a2f + b2) , (8)

where f ∈ S and the parameters a1, b1, a2, and b2 can be
solved from the passband and stopband edges. Substituting the
passband edge and the stopband edge, as illustrated in Fig. 1,
into ĜQ (f) gives

a1

(
2.5

MN
− λ∆f

)
+ b1 = Q−1 (1− δ1) , Q1,

a1

(
2.5

MN
+ (1− λ)∆f

)
+ b1 = Q−1 (δ2) , Q2.

Solving these equations and repeating for ĤQ (f), we obtain

a1 =
Q2 −Q1

∆f
, b1 =

2.5(Q1 −Q2)

MN∆f
+ (1− λ)Q1 + λQ2,

a2 =
Q1 −Q2

∆f
, b2 =

2.5(Q2 −Q1)

MN∆f
+ (1− λ)Q1 + λQ2.

Then an estimate for
∣∣F00

(
ej2πf

)∣∣ becomes F̂Q (f) =

ĜQ (f) ĤQ (f) which is a product of two Q functions.
According to an upper bound of Q functions [8], putting
Q(x) ≤ 1

2e
− 1

2x
2

for x ≥ 0 into F̂Q (f) yields

F̂Q (f) ≤ 1

4
e−

1
2 (a1f+b1)

2

e−
1
2 (a2f+b2)

2

=
1

4
e
− 1

2 (a2
1+a

2
2)

(
f+

a1b1+a2b2
a2
1+a2

2

)2

e
− 1

2
(a1b2−a2b1)2

a2
1+a2

2

≤ 1

4
e
− 1

2
(a1b2−a2b1)2

a2
1+a2

2 =
1

4
e−((1−λ)Q1+λQ2)

2

, (9)

where the second inequality comes from the upper bound of
Gaussian functions. Setting (9) less than or equal to ∆2 and
solving for λ, we obtain

((1− λ)Q1 + λQ2)
2 ≥ − ln (4∆2)
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Fig. 2. A comparison among different approximations of the transition band.
The FIR filter is designed by the MATLAB function firpm with specification
fp = 0.0108, fs = 0.0142, δ1 = 0.01, and δ2 = 0.001. The filter order is
160.

Rearranging the inequality yields

λ ≥ λ̂Q ,
Q1 −

√
− ln (4∆2)

Q1 −Q2
, (10)

where Q1 , Q−1 (1− δ1), Q2 , Q−1 (δ2), and Q−1 (·)
represent inverse Q functions. For the same numerical example
in Sec. IV-A, we have λ̂Q = 0.86926, which is smaller
than λ̂li. As a comparison, brute-force search on (4) gives
λopt = 0.8477.

C. Are these approximations valid?

The estimates for λ are based on how well the functions
approximate the actual transition band. If approximations are
upper bounds of the actual transition bands, the resultant λ
are in the feasible set of (4). Conversely, lower bounds of the
transition bands might lead to smaller λ than λopt.

Fig. 2 illustrates why λ̂Q is closer to λopt than λ̂li. A
practical filter design with filter order 160, passband edge
fp = 0.0108, stopband edge fs = 0.0142, passband ripples
δ1 = 0.01, and stopband ripples δ2 = 0.001 is simulated along
with different transition band approximations. This example is
actually H

(
ej2πfN

)
in the design example of Section V.

Linear functions offer loose upper bounds of the transition
band for frequencies around fs according to Fig. 2. This
phenomenon also confirms that λ̂li is much greater than
λopt. Q functions, however, provide better approximations of
the transition band than linear functions. Hence, the relaxed
optimization problem, (5) works better under the Q function
assumption.

V. A DESIGN EXAMPLE

A design example is given with M = 8, N = 5, Ng =
100, Nh = 160, ∆1 = 0.01, and ∆2 = 0.001, respectively.
Following the design procedure in Table I, we obtain ∆f =
0.0036. The frequency responses of F00

(
ej2πf

)
are shown in

Fig. 3 with different λ. This simulation shows that larger λ
eliminates bumps in the stopband but reduces the passband
width at the same time. λopt maximizes the passband width
while the stopband ripple constraints are met. The proposed

TABLE I
COPRIME DFTFB DESIGN

Inputs: (M,N,Ng , Nh,∆1,∆2)

Initialize:
δ1 = 1−

√
1−∆1,

δ2 = ∆2/(2−
√

1−∆1),
∆f ≥ 2 log1 0

(
1

10δ1δ2

)
/(2 min {MNg , NNh}),

λ = λ̂li = (1− δ1 −
√

∆2)/(1− δ1 − δ2)

or λ̂Q = (Q1 −
√
− ln (4∆2))/(Q1 −Q2),

Increase λ until stopband ripples for F00

(
ej2πf

)
are satisfied.

Increase ∆f until ripples for G
(
ej2πf

)
and H

(
ej2πf

)
are met.

Design lowpass filters g(n) and h(n) with specifications
(δ1, δ2, 0.5/N − λM∆f, 0.5/N + (1− λ)M∆f) for g(n),
(δ1, δ2, 0.5/M − λN∆f, 0.5/M + (1− λ)N∆f) for h(n).

Output: (g(n), h(n))
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Fig. 3. A coprime DFTFB design example with M = 8, N = 5, Ng =
100, Nh = 120, ∆1 = 0.01, and ∆2 = 0.001. dB plots of F00

(
ej2πf

)
for various λ showing the passband behavior (top) and part of the stopband
(bottom).
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Fig. 4. Complete MN bands of coprime DFTFB with the same specification
as Fig. 3 and λ = 0.86926. Top: The overall filter bank response. Bottom:
overall amplitude response for various λ.

estimator using Q functions, λ̂Q, yields a reasonable coprime
DFTFB design closer to the optimum one, compared to λ̂li or
λ = 1.

So far, only the performance of single filter in the coprime
DFTFB was discussed. To evaluate the overall spectrum cov-
erage, the overall amplitude response A

(
ej2πf

)
is defined as

A
(
ej2πf

)
=

N−1∑
`=0

M−1∑
k=0

∣∣F`k (ej2πf)∣∣,
which follows the concept of amplitude distortion in quadra-
ture mirror filter (QMF) bank design [10, Ch. 5] . In the ideal
case, A

(
ej2πf

)
is unity almost everywhere. The error between

A
(
ej2πf

)
and 1 is an indicator of how much the spectrum is

covered by coprime DFTFBs.
On the top plot of Fig. 4, frequency responses of MN = 40

filters cover the spectrum with 40 distinct passbands. On
the bottom plot, A

(
ej2πf

)
is shown only around the pass-

band. For different λ, A
(
ej2πf

)
exhibit “dips” or “bumps”

around f = 0.0125, even in the optimal solution to (4).
Dips in A

(
ej2πf

)
imply that signals around this frequency

are suppressed compared to other frequencies. If the resul-
tant coprime DFTFBs are used in direction-of-arrival (DOA)
estimation or spectrum sensing, sources at these particular
DOAs/frequencies might be rejected down to the noise floor.

To resolve this problem, smaller λ than λopt could eliminate
dips but, as a tradoff, bumps in F00

(
ej2πf

)
will violate the

stopband ripple constraints.

VI. CONCLUDING REMARKS

In this paper, we related coprime DFTFBs in array process-
ing to the IFIR filter design. Given two coprime integers M ,
N , filter orders, and peak ripples, we proposed practical design
steps for coprime DFTFBs. An additional parameter λ was
introduced to formulate the effect of bumps in the stopband.
Closed-form expressions of λ with different approximation
models were also derived. It was verified through simulation
that λ̂ is close to the optimal solution λopt to (4).

In the future, our coprime DFTFB design procedure can
be applied to a variety of applications such as directional-
or-arrival estimation [12], beamforming [13], and spectrum
sensing in cognitive radios [3] with O(M + N) sensors
and O(MN) degrees of freedom. For instance, in cognitive
radios, spectra need to be sensed with few samples, with fast
algorithms, and with high accuracy. Coprime DFTFBs resolve
O(MN) bands using only O(M + N) samples. If designed
properly, our systematic design procedure might improve the
detection accuracy in cognitive radios.
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