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Abstract—The concept of correlation subspaces was recently
introduced in array processing literature by Rahmani and Atia.
Given a sensor array, its geometry determines the correlation
subspace completely, and the covariance matrix of the array out-
put is constrained in a certain way by the correlation subspace.
It has been shown by Rahmani and Atia that this knowledge
about the covariance constraint can be exploited to improve the
performance of DOA estimators. In this paper, it is shown that
there is a simple closed form expression for the basis vectors of
the correlation subspace. Thus, computation of this subspace is
greatly simplified. Another fundamental observation is that, this
expression is closely related to the difference coarray. Thirdly,
the paper also shows an interesting logical connection between
correlation subspaces, redundancy averaging, and rectification,
which are popularly used in DOA estimation1.

Index Terms—Correlation subspace, difference coarray, redun-
dancy averaging, DOA estimation.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation has been a popular
research field in array processing for several decades, which
finds useful applications in radio astronomy, radar, imaging,
and communications [1]–[3]. DOA estimators such as MUSIC
[4], ESPRIT [5], and SPICE [6], to name a few [7]–[11] have
been developed for these applications.

Recently, the elegant concept of correlation subspaces was
proposed by Rahmani and Atia [12], to improve DOA estima-
tion in a number of ways. For any array geometry, the correla-
tion subspace is uniquely determined, and imposes some im-
plicit constraints on the structure of the covariance, as we shall
see. This subspace can be utilized in the denoised covariance
matrix, from which the source directions are estimated more
accurately [12]. Note that the correlation subspace depends on
the array configurations and prior knowledge about the sources
but is independent of the choice of DOA estimators. Hence, a
broad class of DOA estimators are applicable to the denoised
covariance matrix. However, the explicit expressions for the
correlation subspace were not known, so its approximation
was computed numerically in [12]. Furthermore, the way in
which the correlation subspace is influenced by the array
configuration was not explored.

Inspired by correlation subspaces introduced in [12], this pa-
per makes a number of new contributions. We first generalize
the result in [12] to formulate what we call the generalized
correlation subspace. This makes it possible to analyze the
correlation subspace readily. Furthermore, we will show how
to obtain simple and elegant closed-form expressions for the
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dimension and the basis vectors of the correlation subspace,
in terms of the sensor geometry and the difference coarray
geometry. Note that the difference coarray [13] was previously
found to be important in the study of sparse arrays [8], [9].
The results of this paper not only simply the computation of
the correlation subspace significantly, but also provide insights
into some well-known array processing techniques, such as
redundancy averaging [7] and rectification [14].

The outline of this paper is as follows: Section II reviews
the correlation subspace. Section III first proposes the gener-
alized correlation subspace and then derives the closed-form
expressions for the correlation subspace. Section IV discusses
the connections with redundancy averaging and rectification.
Section V presents demonstrative examples while Section VI
concludes this paper.

Notations: Scalars, vectors, matrices, and sets are denoted
by lowercase letters (a), lowercase letters in boldface (a),
uppercase letters in boldface (A), and letters in blackboard
boldface (A), respectively. AT , A∗, and AH are the trans-
pose, complex conjugate, and complex conjugate transpose
of A. The Moore-Penrose pseudoinverse of A is A†. If
A has full column rank, then A† = (AHA)−1AH . The
vectorization operator is defined as vec([a1,a2, . . . ,aN ]) =
[aT1 ,a

T
2 , . . . ,a

T
N ]T , where a1,a2, . . . ,aN are column vectors.

For two Hermitian matrices A and B, A � B is equivalent
to A − B being positive semidefinite. col(A) stands for the
column space of A. The support of a function f(x) is defined
as supp(f) = {x : f(x) 6= 0}, where x belongs to the domain
of f . The indicator function 1A(x) is one if x ∈ A and zero
otherwise. E[·] is the expectation operator. The cardinality of
a set A is denoted by |A|.

The bracket notation [15], [16] is reviewed as follows.
Assume the sensor locations are characterized by a set S =
{0, 3, 6}. Assume the array output on S is denoted by xS =
[7, 8, 9]T . The square bracket [xS]i represents the ith entry of
xS while the triangular bracket 〈xS〉n denotes the sample value
on the support location n. Hence, we have [xS]1 = 7, [xS]2 =
8, [xS]3 = 9, 〈xS〉0 = 7, 〈xS〉3 = 8, and 〈xS〉6 = 9. Similar
notations apply to matrices. For instance, if A = xSx

T
S , then

[A]i,j = [xS]i[xS]j and 〈A〉n1,n2
= 〈xS〉n1

〈xS〉n2
.

II. REVIEW OF CORRELATION SUBSPACES

Assume that D monochromatic sources impinge on an one-
dimensional sensor array. The sensor locations are nλ/2,
where n belongs to an integer set S ⊂ Z and λ is the
wavelength. Let θi ∈ [−π/2, π/2] be the DOA of the ith
source. The normalized DOA of the ith source is defined
as θ̄i = (sin θi)/2 ∈ [−1/2, 1/2]. The measurements on the



sensor array S can be modeled as

xS =

D∑
i=1

AivS(θ̄i) + nS ∈ C|S|, (1)

where Ai is the complex amplitude of the ith source, vS(θ̄i) =
[ej2πθ̄in]n∈S are the steering vectors, and nS is the additive
noise term. It is assumed that the sources and noise are zero-
mean and uncorrelated. Namely, let s = [A1, . . . , AD,n

T
S ]T .

Then E[s] = 0 and E[ssH ] = diag(p1, . . . , pD, pn, . . . , pn),
where pi and pn are the power of the ith sources and the
noise, respectively.

The covariance matrix of xS can be expressed as

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (2)

Rearranging the elements in (2) leads to

vec(RS − pnI) =

D∑
i=1

pic(θ̄i), (3)

where the correlation vectors c(θ̄i) are defined as

c(θ̄i) , vec(vS(θ̄i)v
H
S (θ̄i)) ∈ C|S|

2

. (4)

The relation (3) implies

vec(RS − pnI) ∈ span{c(θ̄i) : i = 1, 2, . . . , D} (5)

⊆ CS , span{c(θ̄) : −1/2 ≤ θ̄ ≤ 1/2}, (6)

where the linear span in (6) is defined as the set of all
vectors of the form

∑L
`=1 a`c(θ̄`) where L ∈ N, a` ∈ C,

and −1/2 ≤ θ̄` ≤ 1/2 [17]. This subspace is called the
correlation subspace, denoted by CS . Eq. (6) also indicates
that vec(RS−pnI) is constrained in a certain way by CS , and
these constraints can be used in designing DOA estimators for
improved performance.

It is clear that CS is a finite-dimensional subspace of C|S|2 ,
due to (4). However, the definition of correlation subspace in
(6) is computationally intractable since it involves infinitely
many c(θ̄). Alternatively, It was observed in [12] that the
correlation subspace can be computed through the column
space of a matrix of finite size, as follows:

Observation 1. The correlation subspace CS satisfies

CS = col(S), (7)

where the correlation subspace matrix S is defined as

S ,
∫ π/2

−π/2
c(θ̄)cH(θ̄)dθ ∈ C|S|

2×|S|2 . (8)

The proof for this observation is given in [18]. Note that
this integral is carried out over the DOA, θ ∈ [−π/2, π/2]
and the relation θ̄ = (sin θ)/2 can be utilized to evaluate (8).
According to (8), it can be shown that the correlation subspace
matrix S is Hermitian and positive semidefinite.

It was shown in [12] that, the right-hand side of (7) can be
simplified further, based on the eigenvectors of S associated

with the nonzero eigenvalues. In particular, let the eigen-
decomposition of S be

S =
[
QCS QCS⊥

]︸ ︷︷ ︸
Q

[
Λ1 0
0 0

] [
QCS QCS⊥

]H
, (9)

where the diagonal matrix Λ1 contains the positive eigenvalues
in the descending order and the columns of Q consist of the
orthonormal eigenvectors. Then, (7) and (9) lead to CS =
col(QCS). Namely, the correlation subspace CS is the column
space of the matrix QCS . Eqs. (7), (8), and (9) indicate that the
matrix S, its eigenvalues, its eigenvectors, and the correlation
subspace depend purely on the array configuration.

For any array geometry, the correlation subspace is uniquely
determined, and imposes some implicit constraints on the
structure of the covariance matrix, as indicated in (6). This
admits a covariance-matrix denoising approach [12]. To begin
with, consider finite snapshot sensor measurements x̃S(k) for
k = 1, . . . ,K. The sample covariance matrix R̃S becomes

R̃S =
1

K

K∑
k=1

x̃S(k)x̃HS (k). (10)

The algorithm in [12] first denoises the sample covariance
matrix R̃S using the following convex program (P1):

(P1): R?
P1 , arg min

R
‖R̃S − pnI−R‖22 (11)

subject to (I−QCSQ
†
CS)vec(R) = 0, (12)

R � 0, (13)

where the noise power pn is estimated from the eigenvalues
of R̃S and ‖ · ‖2 denotes the spectral norm of a matrix (i.e.,
the largest singular value). The cost function in (11) suggests
that the matrix R?

P1 resembles
∑D
i=1 pivS(θ̄i)v

H
S (θ̄i) in (2).

The constraint (12) ensures that vec(R?
P1) belongs to the

correlation subspace while (13) indicates that R?
P1 is positive

semidefinite. Furthermore, (P1) has to be solved numerically,
due to lack of closed-form solutions [12].

Note that the solution R?
P1 can be used in a broad class of

state-of-the-art DOA estimators, such as MUSIC [4], ESPRIT
[5], SPICE [6], and coarray MUSIC [7], [8]. This approach
leads to better estimation performance than DOA estimators
on R̃S, as demonstrated in [12] using the MUSIC algorithm.

To implement problem (P1), it is crucial to find the matrix
QCS first. This step needs to be done only once per array.
Once the matrix QCS is obtained, as in (9), it can be used
repeatedly in problem (P1). To calculate QCS , the numerical
integration was utilized in [12]. This step is typically done
by choosing a dense grid of the parameter θ, which only
approximates the integral in (8). Furthermore, the numerical
eigen-decomposition in (9) introduces perturbations on zero
eigenvalues, making it challenging to determine the correlation
subspace precisely. It is desirable to mitigate these negative
effects caused by numerical computations, as we do next.

III. MAIN RESULTS

The main difficulty in deriving the closed-form expressions
for QCS is as follows. It can be shown that the entries of
S are related to Bessel functions, making it complicated to



obtain analytical forms of (9). In this section, we will present
generalized correlation subspaces, which enable us to derive
explicit expressions for the correlation subspace.

A. Generalized Correlation Subspaces
As a motivating example, let us consider the definition of S

in (8). Since θ̄ = (sin θ)/2, we have dθ = 2(1−(2θ̄)2)−1/2dθ̄.
Hence, (8) can be rewritten as

S =

∫ 1/2

−1/2

c(θ̄)cH(θ̄)
(

2(1− (2θ̄)2)−1/2
)

︸ ︷︷ ︸
the density function

dθ̄. (14)

Note that (14) can be regarded as a weighted integral with
the density function 2(1 − (2θ̄)2)−1/2 over θ̄ ∈ [−1/2, 1/2].
Hence, we can generalize the correlation subspace matrix by
varying the density function in (14). It is formally defined as

Definition 1. Let the correlation vector c(θ̄) be defined as in
(4). Let ρ(θ̄) be a nonnegative Lebesgue integrable function
over the set [−1/2, 1/2]. The generalized correlation subspace
matrix associated with ρ(θ̄) is defined as

S(ρ) ,
∫ 1/2

−1/2

c(θ̄)cH(θ̄)ρ(θ̄)dθ̄. (15)

It can be seen that (14) is a special case of Definition 1, with
ρ(θ̄) = 2(1 − (2θ̄)2)−1/21[−1/2,1/2](θ̄). The density function
ρ(θ̄) quantifies the importance of c(θ̄)cH(θ̄) in S(ρ) across
different θ̄. Then the generalized correlation subspace can be
defined as follows:

Definition 2. Let S(ρ) be the generalized correlation subspace
matrix associated with ρ(θ̄), as in (15). The generalized
correlation subspace is defined as GCS(ρ) , col(S(ρ)).

It can be seen from Definition 1 and 2 that the general-
ized correlation subspaces are parameterized by the density
function ρ(θ̄). For any given support of ρ(θ̄), the generalized
correlation subspace is invariant to the exact shape of ρ(θ̄)
under that support, as indicated by the following lemma [18]:

Lemma 1. Let ρ1(θ̄) and ρ2(θ̄) be two nonnegative Lebesgue
integrable functions over the set [−1/2, 1/2]. If supp(ρ1) =
supp(ρ2), then GCS(ρ1) = GCS(ρ2).

Corollary 1. Let the density function in (14) be ρ1(θ̄) = 2(1−
(2θ̄)2)−1/21[−1/2,1/2](θ̄) and the constant density function be
ρ2(θ̄) = 1[−1/2,1/2](θ̄). Then CS = GCS(ρ1) = GCS(ρ2).

Corollary 1 also enables us to analyze the correlation
subspace readily through the generalized correlation subspace
GCS(ρ2), which will be developed in Section III-B.

B. Closed-Form Expressions of Correlation Subspace
In this section, the closed-form expressions of the cor-

relation subspace will be investigated. This will reveal a
fundamental connection between the correlation subspace and
the difference coarray. Before presenting these results, first
we need to define the difference coarray, the matrix J, and
the weight function for any array geometry S as follows [16]:

Definition 3 (Difference coarray). The difference coarray D
contains the differences between the elements in S, i.e., D ,
{n1 − n2 : ∀n1, n2 ∈ S}.

Definition 4 (The matrix J). The binary matrix J has size
|S|2-by-|D|. The columns of J satisfy 〈J〉:,m = vec(I(m)) for
m ∈ D, where I(m) ∈ {0, 1}|S|×|S| is given by

〈I(m)〉n1,n2
=

{
1, if n1 − n2 = m,

0, otherwise.
(16)

Here the bracket notation 〈·〉n1,n2
is defined in Section I.

Definition 5 (Weight function w(m)). The weight function
w(m) of an array S is defined as the number of sensor pairs
with coarray index m. Namely, w(m) , |{(n1, n2) ∈ S2 :
n1 − n2 = m}| for m ∈ D.

In addition, it can be shown that the matrix J has orthogonal
columns, as in the following lemma [16], [18]:

Lemma 2. JHJ = W , diag(w(m))m∈D. Namely, J has
orthogonal columns and the norm of the column associated
with the coarray index m is

√
w(m).

Now we proceed to derive the closed forms for the cor-
relation subspace. Using the above results and Definition 1
with the density function ρ2(θ̄) = 1[−1/2,1/2](θ̄), we have the
following lemma [18]:

Lemma 3. The eigen-decomposition of S(ρ2) is given by

S(ρ2) = (JW−1/2)W(JW−1/2)H , (17)

where the matrix J and W are defined in Definition 4 and
Lemma 2, respectively.

Eq. (17) also indicates that the matrix JW−1/2 corresponds
to the orthonormal eigenvectors while the diagonal matrix W
is associated with the eigenvalues. In particular, the positive
eigenvalues and the associated eigenvectors of S(ρ2) are given
by

Positive eigenvalues of S(ρ2) = w(m), (18)

Eigenvectors of S(ρ2) =
vec(I(m))√

w(m)
, (19)

where m ∈ D. Note that (18) and (19) can be calculated readily
from the array geometry using Definition 5 and 4, respectively.
Namely, the eigen-decomposition of S(ρ2) can be evaluated
without using the numerical integration in Definition 1 and the
numerical eigen-decomposition on S(ρ2).

Theorem 1. Let the matrix J be defined in Definition 4. Then
the correlation subspace satisfies

CS = col(J). (20)

Proof: According to Corollary 1, we obtain CS =
GCS(ρ1) = GCS(ρ2). The relation GCS(ρ2) = col(J) is due
to Definition 2 and Lemma 3.

This theorem indicates that the correlation subspace is fully
characterized by the matrix J, which can be readily computed
from sensor locations and the difference coarray. Namely, to
compute the correlation subspace, the numerical integration (8)
and the eigen-decomposition (9) can be avoided completely.
Due to Theorem 1 and Lemma 2, the dimension of the
correlation subspace is given by

Corollary 2. The dimension of the correlation subspace is the
size of the difference coarray, i.e., dim(CS) = |D|.



IV. CONNECTIONS WITH REDUNDANCY AVERAGING AND
RECTIFICATION

In this section, we will discuss a covariance matrix denois-
ing framework based on orthogonal projections onto the cor-
relation subspace. This method, denoted by problem (P2), can
be regarded as a modified version of the optimization problem
(P1). This problem (P2) can be solved by simple, closed-
form, and cost-effective expressions, unlike the problem (P1).
Furthermore, (P2) is closely related to redundancy averaging,
which is a well-known processing technique in coarray-based
DOA estimators.

The rationale for (P2) is based on the following chain of
arguments. By setting m = 0 in (16), it can be shown that
pnvec(I) ∈ col(J), where I is the identity matrix. This means
pnvec(I) ∈ CS due to Theorem 1. Since vec(RS−pnI) ∈ CS ,
as in (6), and pnvec(I) ∈ CS , we have vec(RS) ∈ CS . Hence,
in the finite snapshot scenario, we can find the vector p? in CS
that minimizes the Euclidean distance to vec(R̃S). This idea
can be formally expressed as the following covex program

(P2): p? , arg min
p

‖vec(R̃S)− p‖22 (21)

subject to (I− JJ†)p = 0. (22)

Here we Note that (P2) is close to, but different from (P1) in
several ways. First, the cost function in (P1) is the spectral
norm of a matrix while that in (P2) is the Euclidean norm of
the vector vec(R̃S)− p, which is equivalent to the Frobenius
norm of the matrix R̃S−P such that p = vec(P). Second, in
(P1), the signal term and the noise term are handled separately
while in (P2), the vector p? contains the information of sources
and noise. Finally, the positive semidefinite constraint (13) is
dropped in (P2).

The solution to (P2) is given by

p? = JJ†vec(R̃S). (23)

Note that (23) can be evaluated directly, given the sample
covariance matrix R̃S and the array configuration. The com-
putational complexity of (23) is much less than solving (P2)
numerically.

Alternatively, Eq. (23) can be written as

p? = Jx̃D ∈ C|S|
2

, x̃D , J†vec(R̃S) ∈ C|D|. (24)

Due to (24) and Lemma 2, the sample value of x̃D at the
coarray location m ∈ D is given by

〈x̃D〉m =
1

w(m)

∑
n1−n2=m

〈R̃S〉n1,n2
, (25)

where n1, n2 ∈ S. Eq. (25) was previously known as re-
dundancy averaging [7] and [15, Definition 3]. The vector
x̃D is known to be the sample autocorrelation vector on the
difference coarray, which was used extensively in coarray-
based DOA estimators [7], [8], [15] These arguments show
that, redundancy averaging is closely related to (P2), which
uses the concept of the correlation subspace.

Another related technique is rectification, described in [14]
and the references therein. Rectification is composed of two
steps. First, a subspace S is determined so that 1) vec(I) ∈ S
and 2) S has the minimum distance to the set {c(θ̄)/|S| :
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Fig. 1. The sensor locations S and the nonnegative part of the difference
coarrays D+ for (a) ULA with 9 sensors, (b) the nested array with N1 =
4, N2 = 5, and (c) the coprime array with M = 3, N = 4.

−1/2 ≤ θ̄ ≤ 1/2}, where the correlation vector c(·) is defined
in (4). Second, the sample covariance matrix R̃S is rectified by
computing the orthogonal projection of R̃S onto S . This step
helps to improve the estimation performance [14]. However,
the connection between S and the correlation subspace CS , in
which vec(RS−pnI) resides, remains unclear in the literature.
Under the assumptions in this paper, we can show that S =
CS , implying that rectification is equivalent to redundancy
averaging. This unifies the theory of the correlation subspace
[12], redundancy averaging [7], and rectification [14].

V. NUMERICAL EXAMPLES

In this section, we will demonstrate the eigenvalues of
S(ρ2), which were theoretically studied in (18). Here two
methods of computing the eigenvalues of S(ρ2) are used.
Method 1 is based on the numerical integration and the
numerical eigen-decomposition, as used in [12]. Due to (18),
Method 2 computes the weight functions using Definition 5. It
will be shown that Method 2 gives the same result as Method
1. However, Method 2 is faster and more insightful, as we
discussed in Section III.

Consider the following three 1D array configurations: the
ULA with 9 sensors, the nested array with N1 = 4, N2 = 5,
and the coprime array with M = 3, N = 4, where the
notations are in accordance with [8], [9]. The number of
sensors is 9 for each array. The sensor locations and the
nonnegative part of the difference coarrays for these arrays are
depicted in Fig. 1. Since the difference coarray is symmetric,
the size of the difference coarray is 17 for ULA, 49 for the
nested array, and 35 for the coprime array.

For a fixed array configuration, the details of Method 1 are
given as follows. We first compute the numerical approxima-
tion of S(ρ2), denoted by S̃(ρ2), as follows:

S̃(ρ2) =

(Npt−1)/2∑
`=−(Npt−1)/2

c(`∆)cH(`∆)ρ2(`∆)×∆, (26)

where the number of discrete samples is Npt = 214 + 1 and
the step size is ∆ = 1/Npt. Then the eigenvalues of S̃(ρ2) are
computed numerically [12]. These results are plotted in Fig.
2(a), (c), and (e). Method 2 calculates the weight functions
based on Definition 5, as shown in Fig. 2(b), (d), and (f).

It can be observed from Fig. 2(a), (c), and (e) that the
number of positive eigenvalues that are away from zero, is 17
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Fig. 2. The eigenvalues of the matrix S̃(ρ2) (Method 1, left) and the weight functions (Method 2, right) for (a), (b) the ULA with 9 sensors (|D| = 17),
(c), (d) the nested array with N1 = 4, N2 = 5 (9 sensors, |D| = 49), and (e), (f) the coprime array with M = 3, N = 4 (9 sensors, |D| = 35). Here the
matrices S̃(ρ2) are given by (26) and the eigenvalues of S̃(ρ2) are obtained numerically.

for ULA, 49 for the nested array, and 35 for the coprime array.
These results are consistent with the size of the difference
coarray. Furthermore, the eigenvalues for S̃(ρ2) (Method 1)
coincide with the weight functions (Method 2). For instance,
in Fig. 2(e), the eigenvalues λ2 = λ3 = 5 while, in Fig. 2(f),
the weight functions satisfy w(4) = w(−4) = 5.

VI. CONCLUDING REMARKS

In this paper, we proposed closed-form expressions for the
correlation subspace, which reveal a fundamental connection
between the correlation subspace and the difference coarray.
Our results not only simplify the computation of the corre-
lation subspace greatly, but also show an interesting logical
connection between the correlation subspace, redundancy av-
eraging, and rectification. In the future, it would be of consid-
erable interest to exploit the (generalized) correlation subspace
to the case of prior knowledge about sources [18], multiple
dimensions [18], and even state-of-the-art DOA estimators like
SPICE [6] and atomic norm based methods [19].
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