3D Rotation Estimation Using Discrete Spherical Harmonic Oscillator Transforms

Soo-Chang Pei pei@cc.ee.ntu.edu.tw

National Taiwan University Department of Electrical Engineering No. 1, Sec. 4 Roosevolt Rd. Taipei, Taiwan.

National Taiwan University

Chun-Lin Liu cl.liu@caltech.edu

California Institute of Technology Department of Electrical Engineering 1200 E. California Blvd. Pasadena, CA 91125, USA,

May 5, 2014 at ICASSP 2014. Florence, Italy

- 2 Rotation Angle estimation Using Discrete Spherical Harmonic Oscillator Transforms
 - Discrete Spherical Harmonic Oscillator Transforms
 - Object Rotation

Outline

1 Introduction: 3D Rotation Angle Estimation Problem

- 2 Rotation Angle estimation Using Discrete Spherical Harmonic Oscillator Transforms
 - Discrete Spherical Harmonic Oscillator Transforms
 - Object Rotation

3D Rotation Angle Estimation

- Applications in
 - pattern recognition,¹
 - computer vision,²
 - robotics,³ and
 - computerized tomography imaging.⁴

⁴E.J. Garboczi. "Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete ". In: *Cement Concrete Res.* 32.10 (2002), pp. 1621–1638.

¹M. Kazhdan. "An Approximate and Efficient Method for Optimal Rotation Alignment of 3D Models". In: IEEE Trans. Pattern Anal. Mach. Intell. 29.7 (2007), pp. 1221–1229.

²Dietmar Saupe and DejanV. Vranić. "3D Model Retrieval with Spherical Harmonics and Moments". In: Pattern Recogn. Vol. 2191. 2001, pp. 392–397.

³A. Makadia, L. Sorgi, and K. Daniilidis. "Rotation Estimation from Spherical Images". In: Proc. of 2004 ICPR. vol. 3. 2004, 590–593 Vol.3.

Transform-Domain Methods

• Spherical Harmonic Transforms (SHTs)⁵ : Expand 2D surface signal $f(\theta, \varphi)$ in terms of spherical harmonics, $Y_{\ell,m}(\theta, \varphi)$, with coefficients $F_{\ell,m}$.

• Spherical Fourier Transforms (SFTs)⁶ : Express 3D signal $f(\mathbf{r})$ in terms of some basis functions, yielding the coefficients $S_{n\ell m}$.

⁵Eugene P. Wigner. Group theory and its application to quantum mechanics of atom spectra. Academic Press, 1959.

⁶Qing Wang, O. Ronneberger, and H. Burkhardt. "Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates". In: IEEE Trans. Pattern Anal. Mach. Intell. 31.9 (2009), pp. 1715–1722.

Rotation and Wigner D-matrices

Convert spatial rotations to matrix multiplications.

• Estimate α , β , γ from SHTs.

- 2 Rotation Angle estimation Using Discrete Spherical Harmonic Oscillator Transforms
 - Discrete Spherical Harmonic Oscillator Transforms
 - Object Rotation

- 2 Rotation Angle estimation Using Discrete Spherical Harmonic Oscillator Transforms
 - Discrete Spherical Harmonic Oscillator Transforms
 - Object Rotation

Spherical Harmonics Oscillator Transforms (SHOTs)^{7,8}

• Expand 3D signal $f(\mathbf{r})$ onto Spherical Harmonic Oscillator Wavefunctions (SHOWs), $\langle \mathbf{r} | n\ell m \rangle = N_{n\ell} r^{\ell} L_n^{\ell+1/2} \left(r^2 \right) e^{-r^2/2} Y_{\ell m}(\theta, \varphi)$,

⁷David J. Griffiths. Introduction to Quantum Mechanics. 2nd ed. Pearson Prentice Hall, 2004.

⁸Soo-Chang Pei and Chun-Lin Liu. "Discrete spherical harmonic oscillator transforms on the Cartesian grids using transformation coefficients". In: IEEE Trans. Signal Process. 61.5 (2013), pp. 1149 –1164.

Transformation Coefficients

• SHOWs are linear combinations of 3D separable Hermite Gaussian functions.

Advantages of discrete SHOTs

Discrete SHOWs = 3D separable Discrete Hermite Gaussian functions and Transformation Coefficients, Discrete SHOTs = 3D Hermite transforms and Transformation Coefficients.

- Discrete SHOWs are defined on Cartesian grids.
- Spherical components can be analyzed directly from volume data without interpolation.
- In Cartesian coordinates, decompose nonseparable transforms (SHOTs) into separable transforms (3D Hermite transforms).
- Fast Hermite transforms.⁹
- Fast transformation coefficient evaluation.¹⁰

⁹Gregory Leibona et al. "A fast Hermite transform". In: Theor. Comput. Sci. 409.2 (2008), 211228.

¹⁰Soo-Chang Pei and Chun-Lin Liu. "Discrete spherical harmonic oscillator transforms on the Cartesian grids using transformation coefficients". In: IEEE Trans. Signal Process. 61.5 (2013), pp. 1149 –1164.

Outline

Introduction: 3D Rotation Angle Estimation Problem

Rotation Angle estimation Using Discrete Spherical Harmonic Oscillator Transforms

- Discrete Spherical Harmonic Oscillator Transforms
- Object Rotation

Contribution: Object Rotation on Discrete SHOTs

- Exactly the same as that in the SHT case.
- Any angle estimation algorithm based on Wigner-D matrices is compatible with SHOTs.

Angle Estimation Algorithms from Wigner-D matrices¹¹

$$\begin{split} \hat{\alpha}_{f} &= \not\prec \left(n_{0} 11 | f \right), \\ \hat{\beta}_{f} &= \arctan \left(-\frac{\sqrt{2} \left(n_{0} 11 | f \right\rangle \left(\hat{\alpha}_{f}, 0, 0 \right)}{\left(n_{0} 10 | f \right\rangle \left(\hat{\alpha}_{f}, 0, 0 \right)} \right), \qquad \mathbf{R}_{\hat{\alpha}, \hat{\beta}, \hat{\gamma}} = \mathbf{R}_{\hat{\alpha}_{g}, \hat{\beta}_{g}, \hat{\gamma}_{g}}^{-1} \mathbf{R}_{\hat{\alpha}_{f}, \hat{\beta}_{f}, \hat{\gamma}_{f}}. \\ \hat{\gamma}_{f} &= \not\prec \left(n_{0} 21 | f \right\rangle \left(\hat{\alpha}_{f}, \hat{\beta}_{f}, 0 \right), \end{split}$$

¹¹Gilles Burel and Hugues Hénocq. "Determination of the orientation of 3D objects using spherical harmonics". In: Graph. Models Image Process. 57.5 (1995), pp. 400–408.

- 2 Rotation Angle estimation Using Discrete Spherical Harmonic Oscillator Transforms
 - Discrete Spherical Harmonic Oscillator Transforms
 - Object Rotation

3 Experimental Results

4 Conclusion

Parameter Settings

- The continuous signal: three Gaussian mixures with different gains, centers, and variances.
- Take 31 samples in each dimension from the continuous signal and its rotated version.
- The test signal can be considered to be nearly bandlimited signals.
- Running time in seconds:

	SHT	SFT	SHOT
Test 1	1.566143	3.725554	3.669643
Test 2	1.281753	3.370138	3.559185
Test 3	1.276130	3.361931	3.532833

Simulation 1: Estimation Bias and Variance

Simulation 2: Noise Tolerance

- 2 Rotation Angle estimation Using Discrete Spherical Harmonic Oscillator Transforms
 - Discrete Spherical Harmonic Oscillator Transforms
 - Object Rotation

Discussion and Conclusion

- We presented a 3D rotation estimation algorithm based on discrete SHOTs.
- Advantages of discrete SHOTs:
 - Fast computation algorithms.
 - **2** Compatible with spherical-harmonic-based angle estimation algorithms.
- Given volume data, bandlimited inputs, our method outperforms spherical harmonic transforms¹² and spherical Fourier transforms¹³ in terms of estimation variance and noise tolerance.
- Applications in
 - 3D object alignment,
 - 3D object registration,
 - 3D object retrieval.

¹²Gilles Burel and Hugues Hénocq. "Determination of the orientation of 3D objects using spherical harmonics". In: Graph. Models Image Process. 57.5 (1995), pp. 400–408.

¹³Qing Wang, O. Ronneberger, and H. Burkhardt. "Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates". In: IEEE Trans. Pattern Anal. Mach. Intell. 31.9 (2009), pp. 1715–1722.