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Abstract—The Cramér-Rao bound (CRB) offers a lower bound
on the variances of unbiased estimates of parameters, e.g.,
directions of arrival (DOA) in array processing. While there
exist landmark papers on the study of the CRB in the context
of array processing, the closed-form expressions available in the
literature are not easy to use in the context of sparse arrays
(such as minimum redundancy arrays (MRAs), nested arrays,
or coprime arrays) for which the number of identifiable sources
D exceeds the number of sensors N . Under such situations, the
existing literature does not spell out the conditions under which
the Fisher information matrix is nonsingular, or the condition
under which specific closed-form expressions for the CRB remain
valid. This paper derives a new expression for the CRB to fill this
gap. The conditions for validity of this expression are expressed
as the rank condition of a matrix defined based on the difference
coarray. The rank condition and the closed-form expression lead
to a number of new insights. For example, it is possible to prove
the previously known experimental observation that, when there
are more sources than sensors, the CRB stagnates to a constant
value as the SNR tends to infinity.1

Index Terms—Cramér-Rao bounds, Fisher information matri-
ces, Coprime arrays, Sparse arrays, Difference coarray.

I. INTRODUCTION

The Cramér-Rao bound (CRB), which offers a lower bound
on the variances of unbiased estimates of the parameters, has
found significant use in direction-of-arrival (DOA) problems
[1]–[4]. Closed-form expressions for the CRB offer insights
into the dependence of the array performance with respect
to various parameters such as the number of sensors N in
the array, the array geometry, the number of sources D, the
number of snapshots, signal to noise ratio (SNR), and so forth.

The reason for the renewed interest in finding more useful
closed-form expressions for the CRB is the following. For a
long time, sparse arrays, such as the minimum redundancy
arrays (MRAs) have been known to be able to identify
more sources than sensors (D ≥ N ) [5]. More recently, the
development of sparse arrays such as the nested arrays [6]
and the coprime arrays [7], [8], have generated a new wave of
interest in this topic. These new arrays have simple closed-
form expressions for array geometry (compared to MRAs
which do not have this advantage), which makes them more
practical than MRAs. The most essential property of these
successful sparse arrays is that, given N sensors, the difference
coarrays of these arrays have O(N2) elements, which allows
them to identify D = O(N2) sources using N sensors. In
particular, therefore, D � N is possible as demonstrated
amply in [5]–[11].

1This work was supported in parts by the ONR grant N00014-15-1-2118,
and the California Institute of Technology.

It is therefore of great importance to study the performance
limits of these sparse arrays by using standard tools such as
the CRB. If we try to do this using the existing results in
the literature, we run into a road block. Either the known
closed-form expressions are not valid when D ≥ N [1], or the
precise conditions under which they are valid are not specified
[3]. In this context, it is worth mentioning that the pioneering
work by Abramovich et al. many years ago [10] discussed the
performances of MRAs by successfully plotting the CRB even
for the case of D ≥ N . The same can be done today for nested
and coprime arrays. However, the theoretical conditions under
which the CRB exists (for the case D ≥ N ) have not been
spelt out in the past.

We now summarize the main contributions of our paper.
Starting from the Fisher information matrix for the case of
stochastic CRB with uncorrelated priors, as in [3], we derive
a new closed-form expression for the CRB, specifically for
the case of uncorrelated sources. The new CRB expressions
are valid if and only if the FIM is nonsingular. The condition
for the validity of our CRB expression are here expressed
explicitly in terms of the augmented coarray manifold
matrix or the ACM matrix, which depends on the DOAs
and the difference coarray. The main result is that the FIM
is nonsingular if and only if the ACM matrix has full column
rank, which is named as the rank condition. To the best of our
knowledge, the invertibility of the FIM has not in the past been
characterized in terms of the difference coarray geometry. The
proposed CRB expression holds under this rank condition, and
is given by our Eq. (14). Thus the specific CRB expression is
valid whenever the FIM is invertible.

The invertibility of FIM, expressed as a rank condition on
the ACM matrix, leads to a number of further insights as
we shall elaborate in the paper. In short, the rank condition
depends explicitly only on the difference coarray and the
DOAs, whereas the CRB itself depends also on the physical
array, the number of snapshots, and the SNR. We will also
see that if the rank condition on the ACM matrix is satisfied,
then the CRB converges to zero as the number of snapshots
increases. However, the CRB stagnates to a constant value as
the SNR goes to infinity when the array manifold matrix has
full row rank. Similar behavior for D ≥ N was first noticed by
Abramovich et al. in [10] experimentally. Here we elaborate
the conditions and find these to be provable consequences of
the specific CRB expression we derive. In particular, based
on the results in [12], for nested arrays, coprime arrays, and
MRAs, the FIM is provably invertible for O(N2) uncorrelated
sources (the exact number depending on the specific array



used, the source locations, and so forth), and therefore the
CRB expression is provably valid for this many sources.

Notation. Scalars, vectors, matrices, and sets are denoted
by lower-case letters (a), lower-case letters in bold face (a),
upper-case letters in bold face (A), and upper-case letters in
blackboard boldface (A). [A]i,j indicates the (i, j)th entry of
A. For a vector xS defined on S and n ∈ S, 〈xS〉n is the
triangular bracket notation [11]. The complex conjugate, the
transpose, and the complex conjugate transpose of A are A∗,
AT , and AH , respectively. The notation ⊗ is the Kronecker
product. For a full column rank matrix A, the matrix

Π⊥A = I−A(AHA)−1AH , (1)

denotes the orthogonal projection onto the null space of
AH . diag(a1, . . . , an) is a diagonal matrix with diagonals
a1, . . . , an. For a real set A = {a1, . . . , an} such that
a1 < · · · < an, diag(A) = diag(a1, . . . , an). rank(A) and
tr(A) denote the rank and the trace of A, respectively. vec(·)
is the vectorization operation. The cardinality of a set A is |A|.
E[·] denotes the expectation operator. CN (m,Σ) is a complex
normal distribution with mean m and covariance matrix Σ.

II. PRELIMINARIES

In sensor array processing, the sensor locations nd are
described by an integer set S such that n ∈ S, and d = λ/2 is
half of the wavelength. We assume that this sensor array S is
illuminated by D monochromatic plane waves with DOA θi
satisfying −π/2 ≤ θi ≤ π/2 for i = 1, 2, . . . , D. Then, the
measurements on the sensor array S can be modeled as [4]

xS =

D∑
i=1

AivS(θ̄i) + nS ∈ C|S|, (2)

where Ai and θ̄i = (d/λ) sin θi represent the complex ampli-
tude and the normalized DOA of the ith source. nS is a random
noise term. vS(θ̄i)=[ej2πθ̄in]n∈S is the steering vector on S.

In this paper, it is assumed that the uncorrelated sources
have complex normal distribution. The power of the ith source
is pi > 0. The noise vector nS satisfies nS ∼ CN (0, pnI),
where pn > 0 is the noise power. Furthermore, sources are
uncorrelated to noise, namely, E[Ain

H
S ] = 0. Under these

assumptions, xS ∼ CN (0,RS), where

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (3)

Vectorizing (3) and removing duplicated entries give [6], [13]

xD =

D∑
i=1

pivD(θ̄i) + pne0, (4)

where vD(θ̄i) are the steering vectors on the difference coarray
D and e0 is a column vector satisfying 〈e0〉m = δm,0. Here xD
can be regarded as a deterministic data vector on the difference
coarray D, which is defined as

Definition 1 (Difference coarray D). Let S be an integer set
defining the sensor locations. The difference set is defined as
D = {n1 − n2 | n1, n2 ∈ S}.

The finite-snapshot version of (3) and (4) facilitates a variety
of DOA estimators. Assume that x̃S(k) for k = 1, 2, . . . ,K
denote K snapshots of xS. The sample covariance matrix is
R̃S =

∑K
k=1 x̃S(k)x̃HS (k)/K. The finite-snapshot version of

xD, denoted by x̃D, can be constructed from R̃S [6], [11].
Then, the augmented covariance matrix method [9] constructs
an augmented covariance matrix from R̃S. The spatially
smoothed MUSIC algorithm (SS MUSIC) [6], [8] evaluates
a spatially smoothed matrix based on x̃D. These methods
can resolve O(N2) uncorrelated sources for suitable array
geometries like MRAs and coprime arrays with N sensors.

III. NEW CRAMÉR-RAO BOUND EXPRESSIONS

In this section, we will propose a new CRB expression
that remains valid for sparse arrays detecting O(N2) sources,
such as nested arrays, coprimes arrays, and MRAs. First,
it will be shown that a rank condition on the augmented
coarray manifold (ACM) matrix is necessary and sufficient
for the nonsingular FIM, which leads to a closed-from CRB
expression. The detailed proofs of lemmas and theorems can
be found in [12].

Consider a random vector x with a complex normal distri-
bution with mean zero and covariance Σ(α), where α is a
real-valued parameter vector. Then, the (p, `)th entry of the
FIM I(α) is given by [14]

[I(α)]p,` = tr

(
Σ−1(α)

∂Σ(α)

∂[α]p
Σ−1(α)

∂Σ(α)

∂[α]`

)
. (5)

Taking α = [θ̄1, . . . , θ̄D, p1, . . . , pD, pn]T and using (5) for
K snapshots of xS lead to [3], [14]

[I(α)]p,`=KvecH
(
∂RS

∂[α]p

)(
R−TS ⊗R−1

S
)
vec

(
∂RS

∂[α]`

)
, (6)

since tr(ABCD) = vec(BH)H(AT ⊗C)vec(D). (6) can be
expressed as

I(α) = K
[
G ∆

]H [
G ∆

]
, (7)

where

G =
(
RT

S ⊗RS
)− 1

2

[
∂rS
∂θ̄1

. . . ∂rS
∂θ̄D

]
, (8)

∆ =
(
RT

S ⊗RS
)− 1

2

[
∂rS
∂p1

. . . ∂rS
∂pD

∂rS
∂pn

]
, (9)

and rS = vec(RS). It follows from (7) that the FIM is positive
semidefinite. And ∆H∆ is obviously positive semidefinite.
If the FIM is nonsingular, then the CRB for the normalized
DOAs θ̄ = [θ̄1, . . . , θ̄D]T can be expressed as the inverse of
the Schur complement of the block ∆H∆ of I(α) [3], [14]

CRB(θ̄) =
1

K

(
GHΠ⊥∆G

)−1

, (10)

where Π⊥∆ is defined as in (1). Notice that this CRB expression
(10) is valid if and only if ∆H∆ and GHΠ⊥∆G are both
nonsingular. It is of great interest to simplify the condition
that ∆H∆ and GHΠ⊥∆G are both nonsingular. To proceed,
we first define the ACM matrix Ac as follows:



Definition 2 (ACM matrix). The augmented coarray manifold
(ACM) matrix is defined as

Ac =
[
diag(D)VD WD

]
, (11)

where VD, WD are given by

VD =
[
vD(θ̄1) vD(θ̄2) . . . vD(θ̄D)

]
, (12)

WD =
[
VD e0

]
. (13)

Here e0 is a column vector satisfying 〈e0〉m = δm,0 and D is
the difference coarray, as given in Definition 1.

The following lemmas [12] characterize the necessary and
sufficient conditions that ∆H∆ and GHΠ⊥∆G are positive
definite, hence nonsingular.

Lemma 1. ∆H∆ is positive definite if and only if WD has
full column rank, i.e., if and only if rank(WD) = D + 1.

Lemma 2. Assume that rank(WD) = D+1. Then GHΠ⊥∆G
is positive definite if and only if the ACM matrix Ac has full
column rank, i.e., if and only if rank(Ac) = 2D + 1.

The significance of Lemma 1 and Lemma 2 is that the
invertibility of ∆H∆ and GHΠ⊥∆G can be simply charac-
terized by the rank of the ACM matrix. Furthermore, these
conditions lead to a necessary and sufficient condition for
nonsingular FIMs, as summarized next [12]:

Theorem 1. The FIM I(α) is nonsingular if and only if Ac

has full column rank, i.e., if and only if rank(Ac) = 2D+ 1.

We will denote the condition that Ac has full column rank
as the rank condition. The next result is that, if the FIM is
nonsingular, then the CRB exists and the closed-form CRB
expression is given by the following theorem [12]:

Theorem 2. If Ac has full column rank, then the CRB for
normalized DOAs θ̄ = [θ̄1, . . . , θ̄D]T can be expressed as

CRB(θ̄) =
1

4π2K

(
GH

0 Π⊥MWD
G0

)−1

, (14)

where G0 =M(diag(D))VD(diag(p1, p2, . . . , pD)) and M=
(JH(RT

S ⊗RS)−1J)1/2. The binary matrix J has size |S|2-by-
|D| such that the column of J associated with the difference
m is given by 〈J〉:,m = vec(I(m)) for m ∈ D. The |S|-by-|S|
matrix I(m) satisfies

〈I(m)〉n1,n2 =

{
1 if n1 − n2 = m,
0 otherwise,

n1, n2 ∈ S.

Theorem 2 enables us to study the parameters that affect the
CRB, such as the array configuration, the normalized DOAs,
the number of snapshots, and the SNR, as explained next.

Property 1. The rank condition depends only on four factors:
the difference coarray D, the normalized DOAs θ̄, the number
of sources D, and e0. The following parameters are irrelevant
to the rank condition: The source powers p1, . . . , pD > 0, the
noise power pn > 0, and the number of snapshots K.

Property 2. The CRB for θ̄ is a function of the physical
array S, the normalized DOA θ̄, the number of sources
D, the number of snapshots K, and the SNR of sources
p1/pn, . . . , pD/pn.

Property 3. If rank(Ac) = 2D + 1, then as the number of
snapshots K approaches infinity, CRB(θ̄) converges to zero.

The following theorems investigate the asymptotic behavior
of the CRB for large SNR. Assume the sources have identical
power. It was experimentally noticed in [10] that for D < |S|,
the CRB decays to zero for large SNR while for D ≥ |S|,
the CRB tends to converge to a non-zero value for large SNR.
Here we find these phenomena to be a provable consequence
of the proposed CRB expression as given in Theorem 2.

However, in this paper, we notice that the conditions
D < |S| and D ≥ |S| are not fundamental to the asymptotic
behavior of the CRB for large SNR. Instead, the condition
that the array manifold matrix VS has full row rank, i.e.,
rank(VS) = |S|, is more critical. In the regime D < |S|,
VS does not have full row rank since VS is a tall matrix.
Thus, the asymptotic CRB expression can be specified by the
following theorem [12]:

Theorem 3. If the D uncorrelated sources have equal SNR
p/pn, rank(VS) < |S|, and rank(Ac) = 2D + 1, then for
sufficiently large SNR, the CRB has the following asymptotic
expression which converges to zero as SNR tends to infinity:

CRB(θ̄)
∣∣∣ large SNR
rank(VS)<|S|

=
pn

4π2Kp
S−1, (15)

where

S = GH
∞Π⊥M∞WD

G∞ + (GH
∞u)(GH

∞u)H/ ‖u‖2 , (16)

M∞ =
[
JH
[
(UsΛ

−1UH
s )T ⊗ (UnUH

n )

+(UnUH
n )T ⊗ (UsΛ

−1UH
s )
]
J
] 1

2 , (17)

u = (M∞WD)
(
WH

D M2
∞WD

)−1
eD+1, (18)

G∞ = M∞(diag(D))VD, and the (D+1)-dimensional vector
eD+1 = [0, . . . , 0, 1]T . Here VSV

H
S has eigen-decomposition

UsΛUH
s . Un is orthonormal to Us. WH

D M2
∞WD and S can

be readily shown to be positive definite. u can be shown to
be non-zero.

It is obvious from (15) that, as the SNR approaches infinity,
the CRB decays to zero for D < |S|, which is consistent with
the observation in [10].

For D ≥ |S| and VS being full row rank, the asymptotic
CRB expression can be given by [12]

Theorem 4. If the D uncorrelated sources have equal SNR
p/pn, D ≥ |S|, rank(VS) = |S|, and rank(Ac) = 2D + 1,
then for sufficiently large SNR, the CRB has an asymptotic
expression which does not decay to zero as SNR tends to
infinity. Thus,

CRB(θ̄)
∣∣∣ large SNR
rank(VS)=|S|

=
1

4π2K
S−1, (19)

where S = GH
∞Π⊥M∞WD

G∞,M∞ = (JH((VSV
H
S )−T ⊗

(VSV
H
S )−1)J)

1
2 ,G∞ = M∞(diag(D))VD. It can be shown

that WH
D M2

∞WD and S are positive definite.

Theorem 4 also confirms what was empirically observed in
[10], for D ≥ |S|. It will be demonstrated in Section IV that
the proposed CRB expression (14) indeed comes close to the
asymptotic values (15) and (19).
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Fig. 1. The dependence of the proposed CRB expression on snapshots for
various numbers of sources D. The array configuration is the nested array
with N1 = N2 = 2 so that the sensor locations are S = {1, 2, 3, 6}. The
equal-power sources are located at θ̄i = −0.49 + 0.95(i − 1)/D for i =
1, 2, . . . , D. The SNR is 0 dB.
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Fig. 2. The dependence of the proposed CRB expression on SNR for (a)
D < |S| = 4 and (b) D ≥ |S| = 4. The array configuration is the nested
array with N1 = N2 = 2 so that the sensor locations are S = {1, 2, 3, 6}.
The equal-power sources are located at θ̄i = −0.49 + 0.95(i − 1)/D for
i = 1, 2, . . . , D. The number of snapshots K is 200.

IV. NUMERICAL EXAMPLES

Our first numerical example examines Property 3, Theorem
3, and Theorem 4. Consider a nested array with N1 = N2 = 2,
so that the sensor locations S = {1, 2, 3, 6} and the difference
coarray becomes D = {−5, . . . , 5} [6]. As a result, the
total number of sensors is 4 while the maximum number of
identifiable sources is 5. The equal-power sources are located
at θ̄i = −0.49 + 0.95(i− 1)/D for i = 1, 2, . . . , D. It can be
shown that these parameters indeed satisfy the rank condition
so that the proposed CRB expression is valid.

Fig. 1 plots the proposed CRB expression for θ̄1 as a
function of snapshots, with 0 dB SNR. It can be observed
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Fig. 3. The error variance for SS MUSIC and the proposed CRB expression.
The array geometry is the coprime array with M = 3, N = 5 so at most 17
uncorrelated sources can be identified. The equal-power sources are located
at θ̄i = −0.49+0.95(i−1)/D for i = 1, 2, . . . , D. The number of sources
D = 17, which is greater than the number of sensors 10. The number of
snapshots K is 500. Each point is an average over 1000 Monte-Carlo runs.

that this expression is inversely proportional to the number
of snapshots K, which verifies Property 3. These curves also
depend on the number of sources D. In this specific example,
these CRBs increase with D, which suggests that if there are
more sources, it is more difficult to estimate θ̄1 accurately.

Fig. 2(a) and (b) display the relationship between the
proposed CRB expression and the SNR for 200 snapshots.
Fig. 2(a) shows that if D < |S| = 4, the CRBs decrease
with the SNR. For D ≥ |S| = 4, the CRBs saturate when the
SNR is over 20dB, as indicated in Fig. 2(b). These phenomena
are consistent with what was observed experimentally in [10].
Furthermore, the dashed lines in Fig. 2(a) and (b) demonstrate
that, for large SNR, the CRBs indeed converge to the asymp-
totic CRB expressions, as presented in Theorem 3 and 4.

The next example compares the estimation performance for
SS MUSIC with the proposed CRB expression. Consider an
example of the coprime array with M = 3, N = 5 so the
sensor locations are 0, 3, 5, 6, 9, 10, 12, 15, 20, 25 and the dif-
ference coarray contains consecutive integers from −17 to 17
[8]. Therefore, up to 17 uncorrelated sources can be identified.
Fig. 3 shows the dependence of estimation performance for
θ̄1 on SNR, with 1000 runs, 500 snapshots and D = 17
uncorrelated sources. It can be deduced that, first, the proposed
CRB expression is a lower bound of the estimation variance
for SS MUSIC. Furthermore, the SS MUSIC does not achieve
the CRB, even when the SNR is as large as 40 dB.

V. CONCLUDING REMARKS

In this paper, we derived a new expression for the CRB
of DOA estimates. This expression is useful for sparse arrays
such as nested arrays, coprime arrays, or MRAs, which can
identify more sources than sensors. The conditions for validity
of the expression are expressed in terms of the rank of an
augmented coarray manifold matrix. Considerable insights
regarding the behavior of sparse arrays can be gained from
these expressions. In the future, it will be of interest to study
the dependence of the CRB on the array configurations.

During the final revision of this paper we came to know that
somewhat similar results are being reported by Koochakzadeh
and Pal [15] and by Wang and Nehorai [16].
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